KnigkinDom.org» » »📕 Солнечная система - Владимир Сурдин

Солнечная система - Владимир Сурдин

Книгу Солнечная система - Владимир Сурдин читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

1 ... 7 8 9 10 11 12 13 14 15 ... 95
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Вокруг каждой из точек L1—L5 существуют и «настоящие» периодические орбиты. Траектории вокруг лежащей дальше Луны точки L2, похожие на овал в плоскости, перпендикулярной прямой Земля-Луна, получили особое наименование гало-орбит. В будущем они сыграют важную роль в освоении Луны. На гало-орбитах разместятся спутники-ретрансляторы, позволяющие поддерживать радиосвязь между Землей и базой, расположенной на обратной стороне Луны.

На рис.11 изображена более замысловатая периодическая орбита, показывающая их богатое разнообразие. КА на такой орбите попеременно является то спутником Земли, то спутником Луны.


Рис.11

Задача о движении КА в гравитационном поле Земли и Солнца математически тождественна задаче о движении в поле Земли и Луны. Тут тоже существуют периодические орбиты и точки либрации. Более того, они уже используются на практике. Космический аппарат SOHO для исследования процессов на Солнце находится все время на гало-орбите вблизи точки L1.

Решения задачи о движении объекта в окрестности двух массивных тел оказывается очень полезным, и не только в приложении к Солнечной системе: они используются и при изучении движения вещества в двойных звездных системах, и в звездных скоплениях, и в системах галактик. Но нужно помнить, что все эти полезные решения получены при определенных предположениях. Например, точки Лагранжа существуют в рамках ограниченной задачи: два тела имеют конечные массы (любые; обе массы могут быть даже равны друг другу), а третья бесконечно мала (у нас это космический аппарат). Движение в окрестности коллинеарных точек либрации L1, L2, L3 всегда неустойчиво. Устойчивость движения в окрестности треугольных точек Лагранжа L4, L5 зависит от соотношения между массами основных тел. Обозначим массы основных тел через m1≥m2. Введем безразмерный параметр µ, выражающий отношение этих масс:

µ=m2/(m1+m2)

А.М. Ляпунов доказал, что движение в окрестности треугольных точек либрации устойчиво в первом приближении при 27µ(1—µ)

1 ... 7 8 9 10 11 12 13 14 15 ... 95
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.


Партнер

Новые отзывы

  1. Гость гость Гость гость31 октябрь 22:49 Дабы не обесценивать ЭТО, нет желания что ли бо комментировать. ... Выбираю (не) любить... - Диана Фад
  2. машаМ машаМ31 октябрь 22:02 Я очень довольна что открыла для себя этого автора!... Я слежу за тобой - Мэри Хиггинс Кларк
  3. Римма Римма31 октябрь 11:44 Что ж так занудно то? И сюжет хороший , и на юмор потягивает, но на отступлениях и описаниях уснуть можно.... Все зло в шоколаде! - Юлия Фирсанова
Все комметарии
Новое в блоге