Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - Леонард Сасскинд
Книгу Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - Леонард Сасскинд читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!
Шрифт:
Интервал:
Закладка:
Кантор утверждал, что то же самое можно проделать и с бесконечными (он назвал их трансфинитными) множествами. Возьмём для примера множество чётных и множество нечётных натуральных чисел. Каждое из них содержит бесконечное количество элементов, но какое из этих бесконечных чисел больше? Запишем элементы этих множеств один под другим и посмотрим, сумеем ли мы расположить их так, чтобы каждому чётному числу соответствовало одно нечётное. Математики называют это взаимно однозначным соответствием.

Обратите внимание, что эти два списка в конечном итоге должны содержать все чётные и все нечётные числа. Кроме того, они в точности совпадут поэлементно, на основании чего Кантор пришёл к выводу, что количество чётных чисел равно количеству нечётных, несмотря на то что оба множества бесконечны.
А что можно сказать про общее количество натуральных чисел? На первый взгляд кажется, что общее количество натуральных чисел вдвое больше, чем количество чётных. Но Кантор категорически не согласился с таким выводом. Множество чётных чисел может быть поставлено во взаимно однозначное соответствие с множеством всех натуральных чисел.

Согласно математической теории бесконечных чисел, которую построил Кантор, количество чётных чисел является точно таким же, как и количество всех натуральных чисел! Более того, множество чисел, кратных 10, – 10, 20, 30, 40 и т. д. – это бесконечное множество точно такого же размера, как и множество натуральных чисел. Натуральные числа, чётные или нечётные числа, числа, которые делятся на десять, – это всё примеры того, что математики называют бесконечными счётными множествами,[112] и все они имеют один и тот же размер.
Давайте проведём с бесконечными числами мысленный эксперимент. Представьте себе бесконечный мешок, в котором лежат все натуральные числа, записанные на клочках бумаги. Сначала тщательно потрясём мешок, чтобы все бумажки как следует перемешались. Теперь засунем в него руку и вытащим одну бумажку. Какова вероятность того, что записанное на бумажке число будет чётным?
Напрашивающийся ответ: 50 процентов. Поскольку половина чисел в мешке чётные, то и вероятность вытащить чётное число должна быть равна одной второй. Но мы не можем проделать такой эксперимент в реальном мире, потому что никто не может сделать бесконечный мешок для натуральных чисел. Для проверки теории мы можем прибегнуть к небольшой хитрости и использовать конечный мешок, содержащий, скажем, первую тысячу натуральных чисел. Если мы повторим эксперимент много раз, то обнаружим, что вероятность вытянуть чётное число действительно близка к одной второй. Затем мы можем провести этот же эксперимент с мешком, в котором находятся первые десять тысяч натуральных чисел. И опять мы обнаружим, что вероятность вытащить чётное число равна одной второй. Проводя эксперимент с первыми 100 000 натуральных чисел, с первым миллионом натуральных чисел, с первым миллиардом и т. д., мы каждый раз будем получать вероятность, равную одной второй. Разумно экстраполировать результат нашего эксперимента на бесконечное количество натуральных чисел и предположить, что вероятность по-прежнему останется равной одной второй.
Но погодите. Мы можем изменить содержимое мешка следующим образом. Положим в первом эксперименте в мешок одну тысячу первых чётных чисел и две тысячи первых нечётных. Теперь нечётных чисел в мешке вдвое больше, чем чётных, и вероятность вытащить чётное число равна одной третьей. Повторим эксперимент с первыми 10 000 чётных и первыми 20 000 нечётных чисел и снова получим вероятность, равную одной третьей. Как и в предыдущем эксперименте, мы можем экстраполировать этот результат на бесконечное количество чисел и прийти к выводу, что искомая вероятность равна одной третьей. На самом деле, изменяя условия эксперимента, мы можем получить любое значение вероятности.
Вечно раздувающаяся Вселенная – это бесконечный мешок, только наполненный не клочками бумажек с числами, а карманными вселенными. Это мешок, в котором любой наперёд заданный вариант вселенной – любая долина Ландшафта – содержится бесконечно счётное количество раз. Не существует очевидного математического способа сравнить количество экземпляров одного вида карманной вселенной с количеством другого и объявить, что один вариант является более вероятным, чем другой. Следствие из этого факта представляется очень тревожным: похоже, что нет способа определить относительную распространённость различных антропно-приемлемых вакуумов.
Проблема меры (мерой в космологии называется относительная частота встречаемости различных вакуумов) сильно беспокоит многих великих космологов, в частности Виленкина и Линде. Она может оказаться ахиллесовой пятой вечной инфляции. С одной стороны, очень трудно понять, как избежать вечной инфляции в какой-нибудь теории, содержащей интересный ландшафт. С другой стороны, не менее трудно понять, как использовать получившуюся теорию для предсказания чего бы то ни было в традиционном научном смысле.
В прошлом физика уже сталкивалась с многочисленными проблемами, связанными с бесконечными числами: с ультрафиолетовой катастрофой, успешно предотвращённой Максом Планком, или с расходимостями в первых вариантах квантовой теории поля. Даже проблемы чёрных дыр, из-за которых спорили Хокинг и ‘т Хоофт, тоже связаны с бесконечностью. Согласно расчётам Хокинга, горизонт чёрной дыры способен безвозвратно поглотить бесконечное количество информации. Всё это были глубокие проблемы трансфинитных или бесконечных чисел. И в каждом случае приходилось находить новые физические принципы, прежде чем мог быть достигнут какой-либо прогресс. В случае Планка это была квантовая механика, а именно открытие Эйнштейном того, что свет состоит из квантов. Бесконечные числа, досаждавшие квантовой теории поля, были побеждены только после открытия Кеннетом Вильсоном принципа перенормировки. История с чёрными дырами продолжается до сих пор, но контуры решения задачи уже намечены в виде голографического принципа. В каждом случае оказывалось, что классические методы расчёта завышали количество степеней свободы, которыми описывается мир.
Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.
- 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
- 2. Просьба отказаться от оскорблений, угроз и запугиваний.
- 3. Просьба отказаться от нецензурной лексики.
- 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.
Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.
Оставить комментарий
-
Гость Татьяна30 май 15:03 Сказка. А потом ускочет мальчик,а тётенька будет воспитывать сынка-внучка по новой тянуть лямку. ... Друг сына - Мария Зайцева
-
Гость Вера25 май 10:38 Я давно и безнадежно влюблена в эту серию книг... Королевская кровь. Стальные небеса - Ирина Котова
-
Гость Марина23 май 13:22 Очень жаль, что не закончена книга. Мне очень понравилась ... Вахтовик - Владимир Мухин