Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос
Книгу Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!
Шрифт:
Интервал:
Закладка:
Выполненное Декартом соединение алгебры и геометрии — это мощный пример взаимодействия между абстрактными идеями и пространственным воображением, и это взаимодействие стало с тех пор постоянным сюжетом в математике. Многие из наиболее впечатляющих доказательств в алгебре — включая доказательство Великой теоремы Ферма — опираются на геометрию. Подобным же образом, получив алгебраическое описание, геометрические задачи, история которых составляет до двух тысяч лет, зажили новой жизнью. Одно из наиболее восхитительных свойств математики как раз и выражается в том, как различные с виду предметы оказываются связаны между собой, что приводит к новым неожиданным открытиям.
В 1649 году Декарт по приглашению шведской королевы Кристины перебрался в Стокгольм, дабы исполнять обязанности ее личного наставника. Королева была ранней пташкой. Необходимость вставать в 5 утра, помноженная на отсутствие привычки к скандинавской зиме, привела к тому, что вскоре после приезда Декарт заболел воспалением легких и умер.
* * *
Одним из наиболее очевидных следствий из Декартова озарения, заключавшегося в том, что уравнения, связывающие x и y, можно выражать в виде линий, было осознание того факта, что различные типы уравнений дают при этом различные типы линий. Мы можем начать их классификацию прямо с наших уравнений.
Уравнения, подобные у = x и у = 3х - 2, содержащие только x и у, всегда дают прямые линии.
Напротив, уравнения, содержащие квадратичные члены — то есть те, которые включают выражения х2 и/или у2, — всегда дают кривые одного из следующих четырех типов: окружность, эллипс, парабола или гипербола.
Тот факт, что всякую окружность, эллипс, параболу и гиперболу, нарисованные на плоскости, можно описать уравнением, квадратичным по x и у, крайне полезен для науки по той причине, что эти кривые присутствуют в реальном мире. Парабола — это траектория объекта, брошенного в воздух (в пренебрежении сопротивлением воздуха и в предположении однородного гравитационного поля). Когда футболист бьет по мячу, летящий мяч тоже описывает параболу. Эллипсы — это кривые, по которым планеты движутся вокруг Солнца, а траектория, по которой движется в течение дня тень, отбрасываемая самым кончиком гномона солнечных часов, — это гипербола.

Рассмотрим следующее квадратичное уравнение, которое на самом деле подобно машине для рисования окружностей и эллипсов:

где а и b — некоторые постоянные. У этой машины два рычажка, один из которых управляет буквой a, а другой — буквой b. Подбирая значения a и b, мы можем по своему желанию нарисовать любую окружность и любой эллипс с центром в точке 0.
Например, когда a совпадает с b, получающееся уравнение описывает окружность радиуса a. Когда а = b = 1, уравнение принимает вид х2 + y2 = 1 и получается окружность радиуса 1 — «единичная окружность», как та, что нарисована слева на рисунке. Если же а и b — различные числа, то уравнение описывает эллипс, который пересекает ось x в точке а и ось у в точке b. Например, кривая справа — это эллипс, для которого а = 3 и b = 2.
В 1818 году французский математик Габриель Лямэ, размышляя над формулой для окружности и эллипса, задался таким вопросом: что будет, если «подкручивать» не значения a и b, а показатели степени?
Эффект оказался восхитительным. Рассмотрим, например, уравнение хn + уn = 1. При n = 2, как мы видели, оно порождает единичную окружность. А вот кривые, получаемые при n = 2, n = 4 и n = 8:


Когда n равно 4, кривая выглядит как окружность, стиснутая при запихивании в квадратный ящик. Ее стороны уплощаются, но остаются четыре скругленных угла. Как будто окружность пытается стать квадратом. Когда n равно 8, получающаяся кривая еще более походит на квадрат.
На самом деле, чем большее мы выберем число n, тем ближе полученная кривая будет к квадрату. В пределе, когда x∞ + у∞ = 1, уравнение описывает квадрат. (Если что-то и заслуживает названия квадратуры круга, то это как раз тот самый случай.)
* * *
В центре Стокгольма расположен Сергелс Торг — многоуровневый торговый центр и транспортный узел. Это широкое прямоугольное пространство, устроенное так, что нижний уровень предназначен для пешеходов, а машины ездят сверху по кругу. Именно там политические активисты любят устраивать различные мероприятия, и именно туда стекаются спортивные болельщики, когда шведская сборная выигрывает какое-то значимое международное соревнование. Визитная карточка этого места — расположенная в центральной части здоровенная скульптура, стоящая там со времен 1960-х годов, предмет ненависти местных жителей — 37-метровый обелиск из стекла и стали, подсвечиваемый по ночам.
В конце 1950-х годов, когда планировщики города проектировали Сергелс Торг, они столкнулись с некой геометрической проблемой. Какова, спрашивали они себя, наилучшая форма для кругового движения в прямоугольном пространстве? Им не хотелось использовать точную окружность, потому что в таком случае прямоугольное пространство было бы задействовано не полностью. Но градостроители также не желали использовать овал и эллипс — несмотря на то, что они лучше заполняют пространство — и в том и в другом случае «заостренные» края препятствовали бы плавному движению транспорта. В поисках ответа архитекторы решили проконсультироваться у зарубежного специалиста и обратились к Питу Хейну (1905–1996). Этот человек некогда считался третьей по известности фигурой в Дании (после физика Нильса Бора и писательницы Карен Бликсен). Пит Хейн изобрел «груки» — короткие афористические стихотворения, которые он публиковал во время Второй мировой войны, считая их одной из форм пассивного сопротивления оккупации Дании нацистами. Кроме того, он был художником и математиком, а потому обладал как раз нужным художественным чутьем, широтой мышления и научным взглядом на мир — сочетание, которое могло бы помочь взглянуть под другим углом на проблему планировки стокгольмского центра.
Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.
- 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
- 2. Просьба отказаться от оскорблений, угроз и запугиваний.
- 3. Просьба отказаться от нецензурной лексики.
- 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.
Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.
Оставить комментарий
-
Гость Марина15 июль 14:27 Очень интересно, динамично, характерно. Не могла оторваться. Благодарю! ... Еще один шанс: Еще один шанс. Дикая война. И один в тайге воин - Ерофей Трофимов
-
Гость granidor38515 июль 07:50 Помощь с водительскими правами. Любая категория прав. Даже лишённым. Права вносятся в базу ГИБДД. Доставка прав. Подробная... Брак по расчету - Анна Мишина
-
Kelly11 июль 05:50 Хорошо написанная книга, каждая глава читалась взахлёб. Всё описано так ярко: образы, чувства, страх, неизбежность, словно я сама... Не говори никому. Реальная история сестер, выросших с матерью-убийцей - Грегг Олсен