Эволюция Вселенной и происхождение жизни - Пекка Теерикорпи
Книгу Эволюция Вселенной и происхождение жизни - Пекка Теерикорпи читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!
Шрифт:
Интервал:
Закладка:
Основой старой физики была свободная частица, движущаяся с постоянной, точно известной скоростью. Но затем принцип неопределенности Гейзенберга сообщил нам, что мы ничего не знаем о положении частицы: она везде, и в то же время ее нет нигде во Вселенной! Классическая частица просто не может жить в квантовом мире. Равно как и знакомое нам понятие орбиты становится неопределенным.
Рассмотрим электрон, который покинул точку А и позже наблюдался в точке В (рис. 17.6). Лаплас, защитник механики Ньютона, вычислил бы орбиту между этими двумя точками и мог бы точно сказать вам, где на орбите был электрон в каждое мгновение своего путешествия и с какой скоростью он двигался. Принцип неопределенности не позволяет так подробно описать движение этой частицы. Электрон наблюдался в точках А и В, но мы действительно не знаем, где он был в промежутке. Самое большее, что мы можем сделать, это вычислить вероятности любой траектории электрона между этими двумя точками.
Если у электрона нет определенной орбиты, то откуда он знает, куда двигаться? Можно сказать, что электрон пробует одновременно все пути. Каждый путь представлен электронной волной. Когда волны всех путей складываются друг с другом, то в большинстве точек они гасятся. Только в некоторых точках они в результате интерференции усиливаются, там и возникает высокая вероятность найти электрон. Точка В как раз такая. Но каким же был реальный путь от А до В? Ответ: все пути или ни один из них, как вам больше нравится. Идея орбиты потеряла свой смысл. Когда мы говорим о более массивных телах, то подходим к классической орбите. Для них интерференционная картина всех траекторий дает высокую вероятность тонкой линии, соединяющей точки А и В. Поэтому в повседневной жизни мы спокойно можем использовать концепцию Лапласа.
Рис. 17.6. Путь частицы от точки А к точке В. Чтобы найти самую короткую траекторию, частица проверяет все возможные пути. Волна, связанная с частицей, разрушительно интерферирует с любой другой, за исключением прямой линии (пунктир), соединяющей А и В. Согласно квантовой теории, частицу можно найти с наибольшей (но не 100 %-ной) вероятностью именно на этой линии.
А что случилось со Вселенной Лапласа в виде часового механизма, который, будучи однажды заведенным, работает «как часы»? Принцип неопределенности разрушает этот механизм еще до того, как вы смогли бы запустить его. Предположение Лапласа, что «если бы положения и скорости всех тел были известны в начальный момент времени», не может осуществиться, так как и в положениях, и в скоростях есть неопределенность: даже если бы одно из них можно было в какой-то момент измерить, второе осталось бы неопределенным. Случайная материализация частицы даже за непроницаемой стеной, как при туннелировании, делает предсказание будущего невозможным.
В это трудно поверить, и для многих физиков «старой гвардии» это было неприемлемо. Даже используя математические методы квантовой физики, они не могли принять концепции, стоящие за этими формулами. В некоторой степени это было похоже на первые годы после Коперника, когда его методы вычислений широко использовали, а систему мира с Солнцем в центре не признавали.
Возможно, самым сомневающимся в интерпретации квантовой механики был Альберт Эйнштейн, который говорил: «Бог не играет в кости». Для опровержения «неопределенного характера» квантовой физики он придумал мысленные эксперименты, в которых можно было бы обойти принцип неопределенности. У Бора и других сторонников квантовой философии на эти аргументы всегда имелся ответ. Но был один эксперимент, который требовалось провеет», чтобы выяснить, кто прав, а кто нет. Этот эксперимент предложили Эйнштейн и его коллеги Борис Подольский и Натан Розен.
Идея Эйнштейна, Подольского и Розена по сути была такой (сами они представляли ее немного иначе): пусть две частицы сталкиваются и затем удаляются друг от друга. В результате столкновения положения и скорости обеих частиц становятся взаимозависимыми. Если мы измерим скорость частицы 1, то скорость частицы 2 легко вычислить без измерения. Положение же частицы 2 можно при этом точно измерить. Тогда окажется, что для частицы 2 мы можем точно определить и скорость, и положение в любой момент времени после столкновения. Этот явный конфликт с принципом неопределенности Эйнштейн, Подольский и Розен использовали как пример, чтобы показать, что система квантовой механики неполна. Однако в ответ на это Нильс Бор заметил, что, когда измеряется скорость частицы 1, сам процесс этого измерения изменяет состояние измерительного прибора. По этой причине точное измерение координаты частицы 2 тем же прибором будет уже невозможным. Так действует здесь принцип неопределенности.
В 1964 году ирландский физик Джон Белл (1928–1990) перевел описанный выше мысленный эксперимент в форму, пригодную для реальных измерений. В 1982 году Ален Аспе осуществил эксперимент в Париже. Опыт показал, что Эйнштейн с коллегами ошибался. Вы не можете обмануть частицу 2. Она знает об измерении частицы 1, даже если эти частицы не успевают обменяться информацией со скоростью света. Эти две частицы являются частями одной системы.
Так было показано, что принцип неопределенности — это фундаментальное свойство природы, и вы не можете обойти его. Но что самое интересное, на него можно опереться в ситуации, которую без него трудно было бы понять. Примером служит вакуум.
Что такое вакуум? Уберите из пространства все вещество, излучение, силовые поля, тогда все, что останется, можно назвать вакуумом. Вы думаете, что это скучно? Напротив — вакуум полон событий. По Гейзенбергу, энергия любого «события» тем более неопределенна, чем короче происходящее. Если даже средняя энергия вакуума может быть нулевой, то на коротких интервалах времени принцип неопределенности позволяет частицам возникать ниоткуда и исчезать никуда. Говорят, что такие частицы живут за счет «займа Гейзенберга».
Таким образом, вакуум заполнен частицами. Хотя каждая частица живет крошечный промежуток времени, на замену им постоянно рождаются новые. Все обычные постоянные частицы плавают в этом «море» частиц (рис. 17.7. Позже мы обнаружим, что вакуум может иметь еще более странные свойства, которые управляют эволюцией всей Вселенной.
Рис. 17.7. Пары частица-античастица рождаются и аннигилируют даже в космическом вакууме.
К 1932 году сложилось довольно простое представление о структуре вещества. Считалось, что атомное ядро состоит из протонов и нескольких электронов. Эти электроны служили для нейтрализации электрического заряда некоторых протонов, поскольку атомный вес всех элементов, за исключением легкого изотопа водорода, превышает их атомный номер, указывающий электрический заряд ядра. Явление бета-излучения, когда электрон вылетает из ядра, поддерживало мнение о том, что электроны входят в состав ядра. Все вещество состоит из двух типов элементарных частиц: из легких отрицательно заряженных электронов и массивных положительных протонов. Из комбинаций этих частиц можно собрать ядро любого элемента. Добавив нужное число обращающихся вокруг ядра электронов, можно получить любой элемент. А химические соединения элементов дают все многообразие вещества во всех его формах.
Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.
- 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
- 2. Просьба отказаться от оскорблений, угроз и запугиваний.
- 3. Просьба отказаться от нецензурной лексики.
- 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.
Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.
Оставить комментарий
-
Тамаринда21 июнь 12:33 Редко что-то цепляет, но тут было всё живое, жизненное, чувственное, сильное, читайте, не пожалеете о своём времени...... Хрупкая связь - Ольга Джокер
-
Гость Марина20 июнь 06:08 Книга очень понравилась, хотя и длинная. Героиня сильная личность. Да и герой не подкачал. ... Странная - Татьяна Александровна Шумкова
-
Гость ДАРЬЯ18 июнь 08:50 После 20й страницы не стала читать, очень жаль, но это огромный шаг назад, даже хуже - обнуление.... ... Пропавшая девушка - Тесс Герритсен