Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир
Книгу Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!
Шрифт:
Интервал:
Закладка:
Гипотеза Римана (в геометрической формулировке)
Все нетривиальные нули дзета-функции лежат на критической прямой.
• Нули появляются сопряженными парами. Другими словами, если a + bi — один из нулей, то нулем является и a − bi. Или еще по-другому, если z — один из нулей, то нулем будет и результат его комплексного сопряжения z'. Мы определили «комплексное сопряжение» и обозначения «зет-с-чертой» в главе 11.v. И еще одним способом скажем так: если имеется нуль сверху от вещественной прямой, то его зеркальное отображение снизу от вещественной прямой также будет нулем (верно, разумеется, и обратное).
• Вещественные части нулей симметричны относительно критической прямой, т.е. нуль или имеет вещественную часть, равную 1/2 (в духе Гипотезы Римана), или же представляет собой один из элементов пары с вещественными частями 1/2 + α и 1/2 − α для некоторого вещественного числа α, заключенного между 0 и 1/2, и с одинаковыми мнимыми частями. Примерами могли бы служить вещественные части 0,43 и 0,57 или же вещественные части 0,2 и 0,8. Другой способ сказать то же самое таков: если предположить, что имеется нетривиальный нуль не на критической прямой, то его зеркальный образ при отражении относительно критической прямой также должен быть нулем. Это следует из той формулы в главе 9.vi. Если одна сторона формулы равна нулю, то другая также должна равняться нулю. Не будем рассматривать целые значения буквы s (при которых другие члены в той формуле или ведут себя плохо, или обращаются в нуль); тогда эта формула сообщает, что если ζ(s) равна нулю, то ζ(1 − s) также равна нулю. Тем самым, если (1/2 + α) + it представляет собой нуль дзета-функции, то нулем является и (1/2 − α) − it, а значит, в соответствии с предыдущим пунктом и результат его сопряжения (1/2 − α) + it.
Когда Гильберт выступал со своим докладом, сверх этого было известно немного. Риман предложил еще другую формулу с волной для приближенного числа нулей с мнимой частью между нулем и неким большим числом T (см. главу 16.iv). Однако эту формулу доказали лишь в 1905 году (сделал это фон Мангольдт). Но Гипотезу Римана не забыли совсем. Она мелькает как тема для обсуждения в математической литературе 1890-х годов, например, во французском журнале задач L'lntermédiaire des Mathématiciens. Но по сути дела математики XIX века оставили задачу разбираться с великой и ужасной Гипотезой Бернхарда Римана математикам XX столетия.
IV.
XX столетие было довольно… довольно деятельным столетием. Много чего произошло во всех сферах человеческой жизни. Поэтому в ретроспективе век кажется ужасно долгим, намного дольше, чем просто полторы стандартные протяженности человеческой жизни, в общем-то и составляющие век. Но математика выступает величавой неспешной поступью, и глубокие проблемы, исследуемые современными математиками, выдают свои тайны очень медленно и неохотно. Внутри каждой конкретной математической дисциплины мир также довольно тесен, со своими героями, фольклором и устными традициями, связывающими сообщество воедино как в пространстве, так и во времени. Когда я собирал материал для этой книги, то из разговоров с ныне здравствующими математиками сделал вывод, что XX столетие не так уж далеко простерлось во времени — великие имена, связанные с его началом, находятся от нас все еще «в пределах слышимости».
Например, я пишу эти строки всего неделю спустя после разговоров с Хью Монтгомери, ключевым персонажем в достижениях (о которых будет рассказано в подходящий момент) 70-х и 80-х годов XX века. Хью закончил аспирантуру в Тринити-колледже в Кембридже в конце 1960-х. Среди сотрудников колледжа, которых он знал лично, был Джон Идензор Литлвуд (1885-1977), который в 1914 году получил один из первых значительных результатов, продвигающих вперед наше понимание Гипотезы Римана. «Он пытался убедить меня понюхать пороху с этой задачей», — рассказывает Хью, у которого до сих пор сохранились рукописные записки Литлвуда. Литлвуд теоретически мог бы встретиться и говорить о математике с другом Римана Рихардом Дедекиндом, который дожил до 1916 года, продолжая заниматься математикой практически до самого конца жизни, и который учился у Гаусса! (Мне не удалось выяснить, имела ли такая встреча место в действительности. В реальности она не очень вероятна. Дедекинд ушел на пенсию с поста профессора в Брауншвейгской политехнической школе в 1894 году, после чего, согласно Джорджу Пойа[106], «жил тихой жизнью, встречаясь лишь с очень небольшим числом людей»).
Описываемый период развития математики вызывает сильное ощущение непрерывности, из-за которого меня так и подмывает отбросить строго хронологический подход при рассказе о XX столетии. Это искушение усиливается ввиду характера достижений совершенных в течение этого столетия. История о Гипотезе Римана в XX веке состоит не из одной линии рассказа, а из нескольких нитей, иногда пересекающихся, иногда переплетающихся друг с другом. Здесь требуется маленькое предварительное объяснение; а объяснение само по себе требует предисловия — замечания о том, как математика развивалась в период с 1900 по 2000 год.
V.
Если не считать парижского доклада Гильберта, то 1900 год, конечно, представляет собой произвольную отметку во времени. Математика развивалась равномерно и непрерывно на протяжении всего современного периода. Математики не отправлялись домой с новогодних вечеринок в первые часы 1 января 1900 года (или, если вам больше нравится, 1901 — см. главу 6.ii) с мыслями: «Ага! Уже XX столетие! Нам надо переходить на более высокий уровень абстракции!» — по крайней мере, не в большей степени, чем европейцы, проснувшиеся утром 30 мая 1453 года, думали: «Средние века закончились! Надо бы заняться книгопечатанием, усомниться в авторитете Папы и отправиться открывать Новый Свет!» Мне бы очень не хотелось оказаться в ситуации, когда перед судом моих коллег мне пришлось бы обосновывать термин «математика XX века».
Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.
- 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
- 2. Просьба отказаться от оскорблений, угроз и запугиваний.
- 3. Просьба отказаться от нецензурной лексики.
- 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.
Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.
Оставить комментарий
-
Гость Анастасия28 июль 20:09 Анастасия, спасибо. Спасибо за этот мир. Спасибо за эмоции, за ночи без сна за книгой. Спасибо. ... Крайние земли - Анастасия Владимировна Лик
-
Гость Светлана26 июль 20:11 Очень понравилась история)) Необычная, интересная, с красивым описанием природы, замков и башен, Очень переживала за счастье... Ледяной венец. Брак по принуждению - Ульяна Туманова
-
Гость Диана26 июль 16:40 Автор большое спасибо за Ваше творчество, желаю дальнейших успехов. Книга затягивает, читаешь с удовольствием и легко. Мне очень... Королевство серебряного пламени - Сара Маас