KnigkinDom.org» » »📕 Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры - Алекс Беллос

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры - Алекс Беллос

Книгу Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры - Алекс Беллос читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

1 ... 59 60 61 62 63 64 65 66 67 ... 95
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Начнем с числа 1, которое, как мы выдели выше, является узником в итерации xx2. В случае итерации xx2 + c оно становится беглецом (обратите внимание, что мы начинаем с 1, а значит, c = 1):

1 → 12 + 1 = 2

2 → 22 + 1 = 5

5 → 26

26 → 677 → 458330 → …

А теперь давайте посмотрим, что произойдет с числом −2, которое является беглецом в итерации xx2. В случае итерации xx2 + c оно превращается в узника (обратите внимание, что мы начинаем с −2, значит, c = −2):

— 2 → –22 — 2 = 2

2 → 22 –2 = 2

2 →2

2 →2

Оказывается, в итерации xx2 + c множество узников содержат числа от −2 до 0,25, как показано на рисунке ниже.

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Множество узников итерации x → x2 + с

Теперь поиграем в игру «узники против беглецов» на комплексной плоскости — системе координат, в которой каждая точка определяется комплексным числом. Для начала давайте вспомним, как на комплексной плоскости выполняется операция умножения: умножение на число i эквивалентно повороту против часовой стрелки на 90 градусов. В более общем виде, когда два комплексных числа умножаются друг на друга, углы, которые образуют соответствующие точки с горизонтальной осью, необходимо сложить, а расстояния от начала координат — умножить. (Обозначим комплексные числа символом z, а не a + bi.) На представленном ниже рисунке комплексное число z1 находится под углом θ градусов к горизонтали, на расстоянии r, а число z2 — под углом ϕ градусов к горизонтали, на расстоянии R. Таким образом, комплексное число z1 × z2 расположено под углом θ + ϕ градусов по отношению к горизонтальной оси, на расстоянии r × R. Теперь становится понятно, почему умножение на i — это четверть оборота. Число i — это точка на комплексной плоскости с координатами (0, 1), одна единица вверх по мнимой оси, под прямым углом к горизонтали. Следовательно, умножение комплексного числа, представленного соответствующей точкой на комплексной плоскости, на число i, сводится к повороту на 90 градусов против часовой стрелки и умножению расстояния этой точки от начала координат на 1, значит, расстояние остается прежним — это и есть математическое описание четверти оборота.

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Умножение на комплексной плоскости

Что происходит с комплексными числами в итерации zz2?

Начнем с мнимого числа i:

ii2 = –1

— 1 → 1

1 → 1

Следовательно, i принадлежит множеству узников.

Существует более быстрый способ обнаружить множество узников на комплексной плоскости с использованием информации об умножении комплексных чисел. При умножении двух комплексных чисел мы суммируем углы и умножаем расстояния. Следовательно, для возведения комплексного числа в квадрат необходимо удвоить его угол и возвести в квадрат расстояние. Рассмотрим единичную окружность — с радиусом 1 и центром в начале координат. Все точки такой окружности находятся на расстоянии 1 от начала координат, а это значит, что квадрат любой из этих точек расположен на расстоянии 12 = 1 от начала координат. Другими словами, квадрат числа, соответствующего точке на единичной окружности, остается на единичной окружности. Тогда в случае итерации zz2 все точки на окружности должны принадлежать к множеству узников. Аналогичным образом, если расстояние от точки до начала координат меньше 1, квадрат числа, соответствующего этой точке, находится ближе к началу координат и в процессе итерации будет приближаться к нему все больше. Следовательно, все точки, которые расположены внутри единичной окружности, тоже принадлежат к множеству узников. С другой стороны, если расстояние от точки до начала координат больше 1, квадрат числа, соответствующего этой точке, находится дальше от начала координат и в процессе итерации будет отдаляться от него все больше и больше. Таким образом, в случае итерации zz2 множество узников представляет собой единичный круг, показанный на рисунке ниже.

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Множество узников в итерации z → z2

Теперь приготовьтесь к самому интересному. Нам необходимо определить множество узников в итерации zz2 + c, где c — начальное значение итерации. Давайте подумаем, что означает эта итерация на комплексной плоскости. Мы берем точку c, затем возводим ее в квадрат, что поворачивает ее вокруг начала координат и возводит в квадрат ее расстояние от начала координат. Затем мы прибавляем c, что смещает эту точку на комплексной плоскости на расстояние c. После этого новая точка поворачивается, а ее расстояние от начала координат возводится в квадрат, прежде чем она будет снова смещена на расстояние c. Таким образом, данная итерация представляет собой бесконечное чередование таких операций, как вращение, смещение и перенос в каждой точке на комплексной плоскости. Посредством логических умозаключений невозможно определить, как будет выглядеть множество узников в данном случае. Единственный способ — выполнить итерации для огромного количества точек, что до появления компьютеров было неосуществимо.

В 1979 году работавший в компании IBM французский математик Бенуа Мандельброт заинтересовался итерацией zz2 + c. Его первые распечатки показали множество узников в форме капли с крохотными разводами, напоминающими маленькие брызги, отделившиеся от основной капли. Мандельброт оставил своим ассистентам записку, в которой предупреждал, что эти дефекты появились не из-за ошибки компьютера, и просил не удалять их с распечаток. Увеличив степень детализации этих участков, Мандельброт увидел, что они состоят из удивительных узоров, соединенных с множеством узников крохотными ответвлениями. Постепенно сформировалась полная картина множества узников. Она напоминала жука-долгоносика с игольчатым панцирем и не походила ни на одну известную геометрическую фигуру.

1 ... 59 60 61 62 63 64 65 66 67 ... 95
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.


Партнер

Новые отзывы

  1. Гость Марина Гость Марина20 июнь 06:08 Книга очень понравилась, хотя и длинная. Героиня сильная личность. Да и герой не подкачал. ... Странная - Татьяна Александровна Шумкова
  2. Гость ДАРЬЯ Гость ДАРЬЯ18 июнь 08:50 После 20й страницы не стала читать, очень жаль, но это огромный шаг назад, даже хуже - обнуление.... ... Пропавшая девушка - Тесс Герритсен
  3. Гость Анастасия Гость Анастасия18 июнь 00:13 Хорошо описаны сексуальные сцены. Хотя и не без преувеличений. Сюжет интересный, но я не поняла, почему Арда смогла рожать?... Дракон, что меня купил - Екатерина Вострова
Все комметарии
Новое в блоге