KnigkinDom.org» » »📕 Боевая машина Гизы - Джозеф Фаррелл

Боевая машина Гизы - Джозеф Фаррелл

Книгу Боевая машина Гизы - Джозеф Фаррелл читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

1 ... 72 73 74 75 76 77 78 79 80 ... 84
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Здесь наглядно видно, как геометрия — с некоторым риском упрощения — моделирует две взаимосвязанные системы, каждая из которых в отдельности характеризуется нулевой векторной суммой. Общая векторная сумма этих систем тоже равна нулю, но скалярный потенциал в кватернионном анализе имеет очень большую величину, поскольку в нем каждый вектор включает скалярную составляющую, чистую магнитуду силы. Свернув нашу двухмерную модель в трехмерное изображение, мы получим приведенный выше чертеж. Обратите внимание на то, где проявляются точки напряжений при взаимодействии двух пространственных фигур.


Боевая машина Гизы

Анализ этого чертежа приводит к довольно необычным выводам. Один из главных выводов формулируется так: любая сферическая масса любых размеров может быть представлена как внутреннее напряжение пространства в форме тетраэдра. Следствие этого постулата: напряжение в сферической массе любой величины может быть вызвано тетраэдрическим поворотом силовых полей, то есть нарушением симметричного расположения двух вписанных в сферу тетраэдров. Другими словами, простая геометрия тела Платона, одного из древнейших символов, известных человечеству, могла отражать простейшее из возможных геометрических описаний взаимодействия трехмерного «реакционного пространства» с гиперпространственными мирами. Но этим дело не ограничивается.

При таком повороте тетраэдра его вершины, находящиеся на широте 19,5°, описывают фигуру, которая называется тором (по форме напоминает пончик). Таким образом, заряженные частицы можно представить как тетраэдры, вписанные в виртуальные сферы очень малых размеров.

С точки зрения гипотезы о пирамиде как оружии именно этот чертеж, а не ориентация Великой пирамиды на Сириус — «звезду смерти» местных легенд — является причиной ассоциации этого сооружения со смертью. Тетраэдрическая геометрия сама по себе является «звездой смерти», поскольку открывает возможность воплощения базовой физической модели системы.

Причину этого поможет прояснить связь предположения о присутствии гармоник постоянной Планка в полярном радиусе земли с тетраэдрической физикой этого главного тела Платона. Высказывалась гипотеза, что присутствие этих гармоник предполагает функциональное преобразование массы в длину, а значит, и существование периодической таблицы гравитационных частот элементов.

Связь с тетраэдрической геометрией следующая. Поскольку сфера, в которую вписаны два вращающихся тетраэдра, может иметь любой размер, предположим, что радиус этой сферы равняется длине волны атома любого элемента λm. И поскольку длина волны гравитационной частоты уникальна для этого элемента, размер сферы и вписанных в нее тетраэдров отражает геометрию этого элемента в стабильном состоянии (повернутые под прямым углом друг к другу, или перпендикулярные, тетраэдры), а в нестабильном состоянии при преодолении порога устойчивости тетраэдры поворачиваются, создавая колебания, или кавитацию в ядрах всех атомов. Аналогичным образом можно сформулировать еще одно предположение: в конечном итоге будет открыта связь тетраэдрической геометрии с явлением запутанности фотонов.

Если это предположение верно, из него следует еще один вывод: колебания, или кавитация, в таких областях с высоким напряжением среды будет регистрироваться нами как скачки электронов на более высокую или низкую орбиту, сопровождающиеся эмиссией фотонов. То есть фотоэлектрический эффект представляет собой электромагнитную трехмерную сигнатуру инерциального и гравитационного эффекта в ядрах атомов и самой среде, который проявляется в пространстве с разными размерными свойствами, в точном соответствии с результатом исследований Брауна. Колебания можно представить как асимметрию в гексагональном сечении экватора сферы и двух вписанных в сферу тетраэдров. Другими словами, эта гексагональная структура отражает простую геометрию реакционного, или фазового, пространства любой природы, любой массы и размеров[336]. Геометрические размеры этой гексагональной структуры — как симметричной при перпендикулярном расположении тетраэдров, так и несимметричной — могут служить основой геометрии фазового пространства, явления запутанности фотонов, а также новых теорий клеточной структуры больших систем. Подробнее на этом мы остановимся чуть ниже.

Таким образом, мы можем предположить, что данная схема также является простым способом сказать следующее-. любой атом отражает напряжение — стабильное или нестабильное — среды. Поэтому в данной модели наблюдаемые явления, такие как заряд (протонов, электронов, нейтронов) и масса, являются результатом этого напряжения, а не его причиной[337]. И следовательно, в среде можно создавать напряжение, чтобы заставить любой элемент или сочетание элементов преодолеть порог устойчивости или, при меньшей величине напряжения, заставить любой элемент или сочетание элементов изменить свою конфигурацию.

Эта схема и ее огромный потенциал военного применения представляют собой истинную «звезду смерти», спрятанную в Гизе за Великой пирамидой[338].

Но как все это связано с Великой пирамидой и присутствием гармоник Планка в ее конструкции? Дело в том, что геометрические модели обладают масштабной инвариантностью — то есть все, что применимо к планетарной механике (то, чем занимался Хогланд), применимо и к объектам меньших размеров. В главе VII мы продемонстрировали, как кватернионный анализ приводит к безразмерному взаимодействию коэффициентов самих констант. Поэтому вопрос теперь формулируется так; «Имеет ли безразмерное взаимодействие констант тетраэдрическую основу?» То есть, предполагая, что любая система тетраэдров, вписанных в сферическую массу, отражает простейшую из возможных геометрию взаимоотношений и взаимодействия обычного трехмерного пространства (сфера) и гиперпространства (тетраэдры), можно ли вывести базовые арифметические «гармонические уравнения» соотношений фундаментальных геометрических и физических констант π, ε, φ, Tb(постоянной Планка), L (длины Планка) и Мр (массы Планка)? Как это ни удивительно, но ответом на этот вопрос будет твердое «да».

1 ... 72 73 74 75 76 77 78 79 80 ... 84
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.


Партнер

Новые отзывы

  1. Гость Татьяна Гость Татьяна30 май 15:03 Сказка. А потом ускочет мальчик,а тётенька будет воспитывать сынка-внучка по новой тянуть лямку. ... Друг сына - Мария Зайцева
  2. Гость Вера Гость Вера25 май 10:38 Я давно и безнадежно влюблена в эту  серию книг... Королевская кровь. Стальные небеса - Ирина Котова
  3. Гость Марина Гость Марина23 май 13:22 Очень жаль, что не закончена книга. Мне очень понравилась ... Вахтовик - Владимир Мухин
Все комметарии
Новое в блоге