Альманах «Российский колокол» №2 2021 - Альманах Российский колокол
Книгу Альманах «Российский колокол» №2 2021 - Альманах Российский колокол читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!
Шрифт:
Интервал:
Закладка:
– диез не дает мелодии перед полутоном;
– два полутона допустимы, если они следуют друг за другом в последовательности малых интервалов;
– два полутона внутри кварты не мелодичны;
– не мелодичны четыре целых тона, следующие друг за другом;
– не мелодична септима и другие интервалы через октаву;
– сексты допускаются изредка. Консонируют малые сексты;
– не рекомендуется использовать два тетрахорда одной октавы;
– запрещено использование трех целых тонов, следующих друг за другом;
– два полутона также немелодичны;
– октавные системы немелодичны, если внизу не лежит кварта или квинта. Как и Эйлер, Кеплер настоятельно советует избегать диссонирующих интервалов.
И. Кеплер применил октавный принцип при сравнении угловых скоростей планет в перигелии и афелии и получил «основное уравнение астрономии», которое в учебниках записывается как равенство отношений квадратов периодов обращений планет вокруг Солнца и кубов их средних расстояний до Солнца. При этом он пользовался таблицами, определяющими эфемериды планет, составленными его предшественником Тихо Браге – астрономом императора Рудольфа в Праге, которого Кеплер не без основания называл своим благодетелем. В формулировке Кеплера третий закон в русском переводе выглядит так: «Пропорция между периодами обращения любых двух планет составляет ровно полторы пропорции их средних расстояний». Попутно с получением «основного уравнения астрономии», по которому ведутся расчеты небесной механики, вычисления эфемерид планет на многие годы вперед, Кеплер находит зависимость между расстояниями планет от Солнца в афелии и перигелии и их наибольшей и наименьшей угловой скоростью на орбите. Отношения скоростей составляли гармонические интервалы, в большинстве случаев – «консонансы». Таким отношениям угловых скоростей в афелии и перигелии на орбите Сатурна можно было сопоставить большую терцию (4:5), на орбите Юпитера – малую терцию (5:6), на орбите Марса – квинту (2:3), но на орбите Земли – диссонирующий полутон (15:16), на орбите Венеры – диезис (24:25), на орбите Меркурия – октаву с малой терцией (5:12).
При построении звукоряда Кеплер отдал предпочтение натуральной, «доказанной» системе звуков, используя следующие символы: до (ут), ре, ми, фа, соль, ля. Кеплер подробно изучил возможности построения октавной системы. Отсутствие седьмой ноты в системе, образующей септиму, можно связать с желанием соединить число известных в то время планет с числом нот в октаве, хотя в книге об этом ничего не сказано. При построении октавных систем Кеплер ссылается на работу Винченцо Галилея (отца Галилео Галилея) «Диалог об античной и новой музыке», изданной в 1581 г. во Флоренции. В одном из писем Кеплер сообщил, что впервые прочитал эту работу по дороге в Линц, куда ехал к своей матери, обвиненной в колдовстве. Октаву Кеплер строит на тринадцати струнах с помощью следующих мелодических интервалов: полутон, лимма, полутон, диезис, полутон, полутон, лимма, полутон, диезис, полутон, полутон, лимма. Вообще современный звукоряд образуется следующим образом: если октавный промежуток, соответствующий пропорции между числами колебаний струн 1:2, разделить на 12 равных частей (по ступеням гаммы), то получается «хорошо темперированный строй», используемый преимущественно в современной музыке. Числа, отражающие пропорции частот колебаний между ступенями гаммы, выразятся в виде ряда:
20 21/12 22/12 23/12 24/12 25/12 26/12 27/12 28/12 29/12 210/12 211/12 212/12
Полученные геометрические и небесно-механические соотношения Кеплер анализирует, чтобы выявить число октав в различных числовых промежутках. Например, согласно сделанному расчету, между угловыми суточными движениями Земли и Сатурна в афелии содержится пять октав.
Для вычисления музыкальных пропорций Л. Эйлер ввел логарифмы при основании 2, поскольку для октавы (логарифм отношения 2:1) такие логарифмы дают целое число – единицу. Тогда при каком-либо переходе на октаву десятичная дробь после запятой остается без изменения и требует лишь прибавления или вычитания единицы. Эти данные при развитии теории музыки неоднократно использовались в дальнейшем. Например, в «Музыкальном словаре» Г. Римана логарифмы Эйлера использованы для математического определения соотношения тонов по высоте. Для описания благозвучия интервалов Эйлер вводит степени благозвучия – gradus suanitatis, о которых говорил еще Кеплер. Эти численные определения благозвучия интервалов и аккордов Эйлер находит по следующему арифметическому правилу (отметим, что такой математический подход вполне обоснован для различных применений, поскольку математические символы при разных физических применениях остаются неизменными). По Эйлеру, для простых натуральных чисел степень благозвучия совпадает со значением такого числа. Все остальные числа рассматриваются как произведения упомянутых «начальных» чисел. Степень благозвучия произведения простых чисел равна сумме этих чисел минус единица. Если находится степень благозвучия аккорда, то находится наименьшее число, которое делилось бы на все наименьшие множители в соотношении чисел колебаний. Например, для четырех степень благозвучия определяется так: 2 + 2 – 1 = 3. Для двенадцати (4:3) степень благозвучия четырех равна 3, откуда получаем степень благозвучия для 12:3 + 3–1 = 5. Для натуральной септимы (4:7) наименьшее число, которое делится на 4 и 7, есть 28 = 47. Но степень благозвучия четырех есть 3, тогда степень благозвучия для септимы будет: 3 + 7 – 1 = 9. Эйлер писал, что найденные таким образом степени благозвучия являются важным элементом в музыке и в других областях искусства. Эйлер, как и Кеплер, изучал не только отдельные консонансы и аккорды, но и их последовательности, занимался построением гамм и модуляций. Одна из систем тонов, выведенная Эйлером, почти полностью Кеплеровы многогранники совпадает с диатонично-хроматической, которую используют в настоящее время музыканты.
Кеплеровы многогранники
Для И. Кеплера сопоставление различных музыкальных пропорций, известных еще древним, не просто предмет исследования, а серьезный метод, инструмент, которым он пользуется для изучения закономерностей движения небесных светил. Для построения и определения орбит планетной системы Кеплер использовал правильные вписанные и описанные многогранники (платоновы фигуры). Применение подобной методики к вибрирующей струне позволило выявить в колебаниях ее частей музыкальные интервалы, а также звучания, которые впоследствии позволили определить тембр звука – обертоны. Найденные Кеплером пропорции между консонирующими интервалами одновременно определяли количественные соотношения между используемыми платоновыми фигурами.
Кеплер показывает структуру планетных орбит на основе построения платоновых вписанных и описанных фигур. Так, если вокруг орбиты Земли, которая является общей
Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.
- 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
- 2. Просьба отказаться от оскорблений, угроз и запугиваний.
- 3. Просьба отказаться от нецензурной лексики.
- 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.
Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.
Оставить комментарий
-
Гость Татьяна23 август 09:10 Я очень полюбила книги этого писателя. Нет ничего добрее, жизненнее и оптимистичнее, как бы странно это не звучало. Спасибо. ... Здесь была Бритт-Мари - Фредрик Бакман
-
Гость Татьяна20 август 09:05 Замечательная книга, захватывающая. Спасибо огромное за возможность прочитать книгу. ... Змей-соблазнитель - Татьяна Полякова
-
Батарея09 август 21:50 Книга замечательная, увлекательная, всем советую прочитать. Отдельное спасибо автору за замечательный слог... Мастер не приглашает в гости - Яна Ясная