Пифагор и его школа - Леонид Яковлевич Жмудь
Книгу Пифагор и его школа - Леонид Яковлевич Жмудь читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!
Шрифт:
Интервал:
Закладка:
В истории науки можно найти множество примеров того, как одна научная отрасль заимствует методы, оказавшиеся успешными в других областях знания. Но никто не будет перенимать метод, если его первое применение не дало ощутимых результатов на материале той области, в которой он возник. Между тем дедуктивное доказательство в философии элеатов, да и вообще в философии, отнюдь не обладает той логической убедительностью и неопровержимостью, что и в математике{91}. Ни Пармениду, ни Зенону не удалось, собственно, ничего доказать, они лишь пытались это сделать. Уже их младшие современники атомисты отвергают идею о том, что небытия (т. е. пустоты) нет — их космос состоит именно из пустоты и движущихся в ней атомов. Не имели успеха (да и не могли иметь) и попытки Зенона опровергнуть возможность движения и множественности, хотя поднятые им проблемы во многом стимулировали развитие философии. Влияние элеатов на последующих философов объясняется глубиной и смелостью их мысли, а не дедуктивным доказательством.
Разве не были восприняты некоторые идеи Гераклита, стиль рассуждений которого очень далек от доказательности? После сравнения весьма скромных успехов дедуктивного метода в философии с тем, что он дал математике, вопрос «у кого он был заимствован?» кажется риторическим.
Не более убедительна и гипотеза, связывающая зарождение дедуктивного доказательства с красноречием, будь то политическим или судебным. Дело даже не в том, что начало риторики принято относить ко второй трети V в. до н. э., а свое полное развитие она получила еще позднее, — в конце концов греки могли аргументированно доказывать свои взгляды и во времена Фалеса. Но там, где речь идет о жизненных интересах людей, логические аргументы не могут иметь решающей силы, — а именно с этой ситуацией мы сталкиваемся в народном собрании и в суде{92}. В то время как греческая математика отталкивалась в своих доказательствах от вещей очевидных и всеми признававшихся истинными, для политической и судебной аргументации такой общей основы нет. Здесь мы имеем дело не только с фактами, но и с различием взглядов и ценностных ориентаций: то, что очевидно для аристократа, может быть совершенно неубедительным для сторонника демократии. Хорошо известно, что в Греции один и тот же человек часто писал убедительные речи и для истца, и для ответчика, а обвиняемые в тяжелых преступлениях приводили в суд жену и детей, больше надеясь смягчить судей их несчастным видом и плачем, чем своими аргументами. Трудно представить, что в этой атмосфере могло зародиться стремление строго следовать фактам и ни в чем не погрешать против логики.
Итак, можно быть уверенным: математика не заимствовала дедуктивное доказательство у философии или красноречия — оно зародилось в ней самой. В то же время дедуктивный метод в отличие от просто логических рассуждений нельзя считать чем-то внутренне присущим обращению с числами и фигурами: на Древнем Востоке (включая Индию и Китай) математика развивалась, без него. Что же заставило Фалеса искать ее именно дедуктивное доказательство очевидных фактов? Играли ли здесь роль чисто математические соображения или следует искать стимулы, внешние по отношению к математике?
На наш взгляд, наиболее убедительный ответ на эти вопросы дал А. И. Зайцев{93}. Одно из центральных положений его концепции состоит в том, что в Греции в силу специфических исторических условий впервые в истории человечества получили общественное одобрение все формы творчества, все формы продуктивной духовной деятельности, в том числе и лишенные непосредственно-утилитарного значения·. Только в такой атмосфере Фалес, влиятельный и богатый человек, мог, не будучи профессионалом (какими были египетские и вавилонские писцы), взяться за доказательство того, что диаметр делит круг пополам. Более того, он не просто взялся, а приобрел на этом поприще общественное признание. Традиция сохранила его имя и донесла до нас суть тех теорем, которыми он занимался (одну из них до сих пор изучают в школе как теорему Фалеса). Значит, общественная и культурная обстановка того времени была такова, что широкую известность получали авторы даже таких открытий, которые не имели практической ценности, — тем самым создавались мощные стимулы для новых поисков в этой области.
Вторым важным фактором А. И. Зайцев считает особый тип соревновательности, присущий греческому обществу того времени, а именно такой, в котором главным признавалась победа, дававшая славу, а не связанные с ней материальные блага — их зачастую могли и не быть. Этот дух чистого соперничества зародился в греческой агонистике (спортивных состязаниях), а затем распространился и на сферы интеллектуального творчества — сначала на литературу, а вслед за ней на философию и науку, удесятеряя силы тех, кто стремился к истине.
Став на путь свободного, не стесненного узким практицизмом исследования, математики очень быстро убедились в том, что добиться общепризнанных и неопровержимых результатов на этом поприще можно, лишь применяя строго логическое доказательство. Эмпирический, вычислительный, метод (в пределах четырех действий арифметики), доступный грекам в то время, не обладал такой убедительной силой и не мог дать столь интересных результатов, следовательно, он был ненадежным средством в достижении успеха. Ведь сколько бы ни измерял Фалес углы при основании равнобедренного треугольника, всегда оставалась возможность возразить, что один из них больше или меньше другого. Иное дело — дедуктивное доказательство: любой скептик мог самостоятельно пройти по всем его этапам и убедиться в его. неопровержимости. История геометрии VI–V вв. до н. э. позволяет нам проследить последовательное вытеснение из нее приемов, опиравшихся в основном на чувственное восприятие, и решительную победу дедуктивного метода. Бесспорность достигнутых с его помощью выводов была настолько очевидна и притягательна, что вслед за математиками к нему обращаются и философы.
Причину «отрыва» греческой геометрий от ее эмпирической основы следует видеть именно в сочетании всех этих факторов, а не в. особых чертах греческого характера (рационализме, ясности, особой одаренности в математике), на которые так часто ссылаются. Высокий уровень вычислительных приемов вавилонян ясно показывает, что природа не обделила их математическими способностями — все дело в том, в каком направлении они использовались.
Математика Пифагора
Вернемся еще раз к вопросу о том, приписывались ли Пифагору научные открытия его учеников, — ведь, по общему мнению, это обстоятельство служит главным препятствием в реконструкции его математики. Допустим, что Ямвлих прав — в таком случае картина пифагоровой математики была бы следующей. 1) Число) открытий, приписываемых Пифагору, явно превышало бы возможности одного человека. 2) С его именем связывались бы открытия, сделанные уже после его смерти и выходящие за пределы доступных ему сведений. Известно, например, что «отцу медицины» Гиппократу Косскому приписываются сочинения, написанные
Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.
- 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
- 2. Просьба отказаться от оскорблений, угроз и запугиваний.
- 3. Просьба отказаться от нецензурной лексики.
- 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.
Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.
Оставить комментарий
-
Гость Наталья17 июль 12:42 Сюжет увлекательный и затейный,читается легко,но кто убийца,сразу было понятно.... Дорога к Тайнику. Часть 1 - Мария Владимировна Карташева
-
Гость Дарья16 июль 23:19 Отличная книга. Без сцен 18+, что приятно. Легкий и приятный сюжет. Благоразумная ГГ, терпеливый и сдержанный ГГ. Прочла с... Королева драконов - Анна Минаева
-
Dora16 июль 17:16 Типичная история: она — многодетная, затюканная бытом. У нее имеется богатый и красивый муж, у которого завелась любовница, а... Я беременна от вашего мужа - Ольга Ивановна Коротаева