KnigkinDom.org» » »📕 Как устроен ChatGPT? Полное погружение в принципы работы и спектр возможностей самой известной нейросети в мире - Стивен Вольфрам

Как устроен ChatGPT? Полное погружение в принципы работы и спектр возможностей самой известной нейросети в мире - Стивен Вольфрам

Книгу Как устроен ChatGPT? Полное погружение в принципы работы и спектр возможностей самой известной нейросети в мире - Стивен Вольфрам читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

1 2
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
Ознакомительный фрагментlearn → 0,0445305}

Затем эти строки превращаются в отформатированный набор данных:

In[]:= Dataset[ReverseSort[Association[%]],

ItemDisplayFunction → (PercentForm[#, 2] &)]

Вот что произойдет, если многократно «применять модель» – на каждом шаге добавлять слово, имеющее наибольшую вероятность (в коде это слово decision):

In[]:= NestList[StringJoin[#, model[#, "Decision"]] &, "The best thing about AI is its ability to", 7]

Out[] = {Самое лучшее в ИИ – это его способность,

Самое лучшее в ИИ – это его способность учиться,

Самое лучшее в ИИ – это его способность учиться на,

Самое лучшее в ИИ – это его способность учиться на собственном опыте,

Самое лучшее в ИИ – это его способность учиться на собственном опыте.,

Самое лучшее в ИИ – это его способность учиться на собственном опыте. Это,

Самое лучшее в ИИ – это его способность учиться на собственном опыте. Это не,

Самое лучшее в ИИ – это его способность учиться на собственном опыте. Это не так.}

Что будет, если мы продолжим предложение? В этом случае (при нулевой температуре) полученный текст оказывается запутанным и изобилующим повторами:

Самое лучшее в ИИ – это его способность учиться на собственном опыте. Это не просто вопрос обучения на своем опыте, это изучение окружающего вас мира. Искусственный интеллект – очень хороший пример. Это очень хороший пример того, как использовать искусственный интеллект для улучшения своей жизни. Это очень хороший пример того, как использовать искусственный интеллект для улучшения своей жизни. Искусственный интеллект – очень хороший пример того, как использовать его для улучшения своей жизни. Это очень хороший пример того, как использовать искусственный интеллект для

Но что, если вместо того, чтобы всегда выбирать самое популярное слово, мы выберем слова с меньшей вероятностью (с температурой 0,8)? Тогда может получиться следующий текст:

{Самое лучшее в ИИ – это его способность,

Самое лучшее в ИИ – это его способность создавать,

Самое лучшее в ИИ – это его способность создавать миры,

Самое лучшее в ИИ – это его способность создавать миры, которые,

Самое лучшее в ИИ – это его способность создавать миры, которые являются,

Самое лучшее в ИИ – это его способность создавать миры, которые являются одновременно захватывающими,

Самое лучшее в ИИ – это его способность создавать миры, которые являются одновременно захватывающими,}

И каждый раз, когда мы будет выбирать случайные слова, текст окажется разным, как в следующих примерах:

Самое лучшее в ИИ – это его способность к обучению. Мне всегда нравилось

Самое лучшее в ИИ – это его способность по-настоящему проникать в ваш мир и просто

Самое лучшее в ИИ – это его способность изучать поведение человека и то, как он

Самое лучшее в ИИ – это его способность проделывать отличную работу по обучению нас

Самое лучшее в ИИ – это его способность создавать реальные задачи, но вы можете

Стоит отметить, что даже на первом этапе имеется множество возможных «следующих слов» (при температуре 0,8), хотя вероятность их использования падает достаточно быстро (данные на этом логарифмическом графике демонстрируют зависимость от n-1, которая очень характерна для общей статистики языка):

Так что же произойдет, если мы продолжим создавать текст? Вот этот случайный пример уже лучше, чем пример с самыми популярными (нулевая температура) словами, но текст все еще немного странный:

Самое лучшее в ИИ – это его способность видеть насквозь и осмысливать мир вокруг нас, а не паниковать и игнорировать. Мы также можем сказать, что ИИ «выполняет свою работу» или «заурядный ИИ». Действительно, делая бесконечное количество шагов, разработка машины, которая может быть интегрирована с другими системами или управляться одной системой, является одним из наиболее фундаментальных процессов ИИ. Помимо взаимодействия человека и машины ИИ также играет важную роль в творчестве.

Этот текст был написан простой моделью GPT-2 (2019 года выпуска). У более современной модели, GPT-3, результаты получаются намного лучше. Следующий текст был создан при помощи самых популярных (нулевая температура) слов с использованием того же самого промпта, но с помощью новой модели – GPT-3:

Самое лучшее в ИИ – это его способность автоматизировать процессы и принимать решения быстро и точно. ИИ можно использовать для автоматизации повседневных задач вроде ввода данных или для принятия сложных решений, таких как прогнозирование поведения клиентов или анализ больших наборов данных. ИИ также можно использовать для улучшения обслуживания клиентов, поскольку он позволяет быстро и точно реагировать на запросы клиентов. ИИ также можно использовать для повышения точности медицинских диагнозов и автоматизации процесса открытия новых лекарств.

А вот пример, созданный при температуре 0,8:

Самое лучшее в ИИ – это его способность учиться и развиваться с течением времени, что позволяет ему постоянно улучшать свою производительность и быть более эффективным в выполнении задач. ИИ может использоваться для автоматизации повседневных задач, позволяя людям сосредоточиться на более важных вещах. ИИ также можно использовать для принятия решений и предоставления информации, которую в противном случае людям было бы невозможно понять.

Откуда берутся эти вероятности?

Итак, ChatGPT всегда выбирает следующее слово, основываясь на вероятностях. Но откуда берутся эти вероятности? Давайте начнем с более простой задачи. Рассмотрим создание текста на английском языке по одной букве (а не по слову) за раз. Как мы можем определить вероятность для каждой буквы?

Самое простое, что мы могли бы сделать, – это взять образец английского текста и подсчитать, как часто в нем встречается каждая буква. Например, так подсчитываются буквы в статье о кошках (англ. cats) в «Википедии»:

In[]:= LetterCounts[WikipediaData["cats"]]

Out[]= <|e → 4279, a → 3442, t → 3397, i → 2739, s → 2615, n → 2463, o → 2426, r → 2147, h → 1613, l → 1552, c → 1405, d → 1331, m → 989, u → 916, f → 760, g → 745, p → 651, y → 591, b → 511, w → 509, v → 395, k → 212, T → 114, x → 85, A → 81, I → 68, S → 55, F → 42, z → 38, F → 36…|>

А это в статье о собаках (англ. dogs):

In[]:= LetterCounts[WikipediaData["dogs"]]

Out[]= <|e → 3911, a → 2741, o → 2608, i → 2562, t → 2528, s → 2406, n → 2340, r → 1866, d → 1584, h → 1463, l → 1355, c → 1083, g → 929, m → 859, u → 782, f → 662, p → 636, y → 500, b → 462, w → 409, v → 406, k → 151, T → 90, C → 85, I → 80, A → 74, x → 71, S → 65…|>

Результаты похожи, но не идентичны (буква о, без сомнения, чаще встречается в статье о собаках, потому что, в конце концов, она присутствует в самом слове dog). Тем не менее, если мы возьмем достаточно большую выборку текстов на английском языке, то можем ожидать, что в итоге получим достаточно схожие результаты:

In[]:= [

]

Out[]= {e → 12,7 %, t → 9,06 %, a → 8,17 %, o → 7,51 %, i → 6,97 %, n → 6,75 %, s → 6,33 %, h → 6,09 %, r → 5,99 %, d → 4,25 %, I → 4,03 %, c → 2,78 %, u → 2,76 %, m → 2,41 %, w → 2,36 %, f → 2,23 %, g → 2,02 %, y → 1,97 %, p → 1,93 %, b → 1,49 %, v → 0,978 %, K → 0,772 %, j → 0,153 %, x → 0,150 %, q → 0,0950 %, z → 0,0740 %}

Вот что мы получим, если просто сгенерируем последовательность букв с такими вероятностями:


Конец ознакомительного фрагмента Купить полную версию книги
1 2
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.


Партнер

Новые отзывы

  1. Тамаринда Тамаринда21 июнь 12:33 Редко что-то цепляет, но тут было всё живое, жизненное, чувственное, сильное, читайте, не пожалеете о своём времени...... Хрупкая связь - Ольга Джокер
  2. Гость Марина Гость Марина20 июнь 06:08 Книга очень понравилась, хотя и длинная. Героиня сильная личность. Да и герой не подкачал. ... Странная - Татьяна Александровна Шумкова
  3. Гость ДАРЬЯ Гость ДАРЬЯ18 июнь 08:50 После 20й страницы не стала читать, очень жаль, но это огромный шаг назад, даже хуже - обнуление.... ... Пропавшая девушка - Тесс Герритсен
Все комметарии
Новое в блоге