Наука, философия и религия в раннем пифагореизме - Леонид Яковлевич Жмудь
Книгу Наука, философия и религия в раннем пифагореизме - Леонид Яковлевич Жмудь читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!
Шрифт:
Интервал:
Закладка:
Хотя чтение «теория пропорций» (των ανά λόγων πραγματεία) является широко принятым, оно опирается лишь на одну из рукописей комментария Прокла,[571] в других же стоит «теория иррациональных величин» (των άλογων πραγματεία). Тем не менее, если даже у самого Прокла стояла των άλογων πραγματεία, чтение των άνά λόγων πραγματεία могло восходить к тексту Евдема, а затем, уже в виде исправления, появиться в одной из рукописей Прокла. В пользу этого говорят не столько филологические, сколько историко-математические соображения. Применительно ко времени Пифагора вообще нельзя говорить о «теории» иррациональных величин, но лишь об открытии иррациональности √2, и Евдем едва ли мог этого не знать. Теория пропорций тесно связана с акустическими исследованиями Пифагора и с его математическими открытиями: по-видимому, опираясь на нее, он доказал свою знаменитую теорему. Кроме того, о знакомстве Пифагора с теорией пропорций говорят и другие авторы.[572] Если бы Пифагор открыл иррациональность √2, то связь столь известного открытия с не менее знаменитым именем безусловно нашла бы какое-то отражение в греческой литературе. Однако до Прокла никто об этом не писал, все сведения так или иначе связаны с именем Гиппаса.[573] Словом, если у Евдема что-то упоминалось, то скорее теория пропорций; вместе с тем мы в состоянии установить ее принадлежность Пифагору и не опираясь на Евдема.
Непросто обстоит дело и с конструкцией космических тел, т. е. пяти правильных многогранников. Евдем едва ли стал бы приписывать Пифагору конструкцию всех пяти тел: в схолиях к Евклиду (XIII, 1) говорится, что первые три тела (пирамиду, куб и додекаэдр) открыли пифагорейцы, а октаэдр и икосаэдр — Теэтет. Эта информация, как сейчас общепризнанно, восходит к Евдему. Построение же додекаэдра связывается в традиции с Гиппасом (18 А 4), кроме того, оно предполагает открытие иррациональности, которое едва ли было сделано Пифагором. Из всего этого с определенной степенью вероятности можно заключить, что к Пифагору относится лишь построение двух первых многогранников: куба и пирамиды.[574]
Версия о том, что Пифагор — автор конструкции всех пяти тел, встречается еще до Прокла, в доксографической традиции (Aet., 11,6.5 = 44 А 15), и восходит, по-видимому, к Посидонию, т. е. к платонической интерпретации пифагореизма, а не к Феофрасту, как полагал Дильс (DK I, 403.8).[575] Но кто именно внес в каталог эту фразу, Прокл или предшествовавший ему компилятор, сказать трудно. Так или иначе, ясно, что только поздние авторы связывают с Пифагором чужие открытия, а не ранние пифагорейцы — свои.
7. Согласно эпиграмме Аполлодора-логистика, Пифагору принадлежит доказательство теоремы, носящей его имя. Единодушие, с которым все античные свидетельства называют Пифагора автором этой теоремы, отсутствие иных претендентов, а также ее тесная связь с другими его открытиями, в частности с теорией пропорций, говорят в пользу достоверности слов Аполлодора.
8. Наконец, последнее заслуживающее внимания свидетельство: Герон Александрийский (Geom. 8, р. 218), а вслед за ним и Прокл (In Euch., p. 428) приписывают Пифагору метод определения длины сторон прямоугольного треугольника (пифагоровы тройки). Известно, что оба они пользовались сочинением Евдема, к нему, вероятно, и восходит эта информация.[576] Иной источник здесь трудно предположить.
Итак, мы можем предварительно очертить круг тех конкретных математических проблем, к решению которых Пифагор был, скорее всего, лично причастен: теория пропорций, теория четных и нечетных чисел, теорема Пифагора, метод определения пифагоровых троек и построение двух правильных многогранников. Разумеется, нельзя полагать, что этим и исчерпываются все открытия Пифагора в математике. Фрагментарные свидетельства авторов IV в. служат лишь фундаментом для дальнейшей реконструкции математики Пифагора, в ходе которой необходимо привлекать как более поздние сведения, так и внутреннюю логику развития самой математики.
Но прежде чем двигаться дальше, отметим, во-первых, непротиворечивость приведенных выше свидетельств и тесную взаимосвязь математических проблем, о которых они сообщают, а во-вторых, то, что все открытия Пифагора вполне соответствуют уровню греческой математики конца VI в. Пифагорейская математика первой половины V в. (открытие иррациональности, теория приложения площадей и т.д.) закономерно продолжает исследования основателя школы, но все это связывается не с ним, а либо с пифагорейцами в общем, либо конкретно с Гиппасом. Следовательно, ни внутри пифагорейской школы, ни за ее пределами не существовало стремления приписывать Пифагору чужие научные достижения, по крайней мере в области математики.
Но, может быть, эта тенденция проявилась в более поздний период, так что с течением времени Пифагора делали автором все новых и новых открытий? Однако и это предположение не подтверждается известным нам материалом.
Историки рубежа IV—III вв. Антиклид и Гекатей Абдерский, говоря о занятиях Пифагора математикой, не приводят никаких конкретных деталей (FGrHist 140 F 1; 264 F 25). Каллимах упоминает об изучении треугольников и открытии Пифагором какой-то «фигуры» (fr. 191, 58-62 Pfeiffer). В его словах принято видеть намек на знаменитую теорему, что косвенно подтверждает раннюю датировку эпиграммы Аполлодора. Плутарх, цитируя эту эпиграмму, затруднялся решить, к чему именно она относится: к теореме Пифагора или к теории приложения площадей, которую он считал более важным открытием (Non posse. 11,1094 b; Quest, conv. 720 a). Совершенно ясно, что Плутарх не располагал никаким источником, прямо называющим Пифагора автором этой теории.
Никомах пишет о том, что Пифагору были известны арифметическая, геометрическая и гармоническая пропорции (Intr. arith. 11,22) и три средних пропорциональных (ibid., 11,28). Ямвлих к этому добавляет, что при Пифагоре среднее гармоническое называлось «подпротивным» (ύπεναντία), а начиная с Гиппаса его стали называть гармоническим (In Nicom., p. 100). В другом месте Ямвлих говорит, что Пифагору была также известна «музыкальная» пропорция, которую он «вывез из Вавилона» (ibid., р. 118). Наконец, он
Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.
- 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
- 2. Просьба отказаться от оскорблений, угроз и запугиваний.
- 3. Просьба отказаться от нецензурной лексики.
- 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.
Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.
Оставить комментарий
-
Гость Наталья17 июль 12:42 Сюжет увлекательный и затейный,читается легко,но кто убийца,сразу было понятно.... Дорога к Тайнику. Часть 1 - Мария Владимировна Карташева
-
Гость Дарья16 июль 23:19 Отличная книга. Без сцен 18+, что приятно. Легкий и приятный сюжет. Благоразумная ГГ, терпеливый и сдержанный ГГ. Прочла с... Королева драконов - Анна Минаева
-
Dora16 июль 17:16 Типичная история: она — многодетная, затюканная бытом. У нее имеется богатый и красивый муж, у которого завелась любовница, а... Я беременна от вашего мужа - Ольга Ивановна Коротаева