KnigkinDom.org» » »📕 Завтрак с Эйнштейном. Экзотическая физика повседневных предметов - Чад Орцель

Завтрак с Эйнштейном. Экзотическая физика повседневных предметов - Чад Орцель

Книгу Завтрак с Эйнштейном. Экзотическая физика повседневных предметов - Чад Орцель читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

1 2 3 ... 73
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
же время продолжает создавать проблемы для теоретиков, вычисляющих свойства материи, и одновременно гравитация печально известна своей математической несовместимостью с остальными тремя взаимодействиями[22].

При всем при этом, однако, очень трудно указать точно, что же делает слабое взаимодействие. Что делает слабое взаимодействие особенно трудным для объяснения неспециалистам в физике по сравнению с другими силами, так это то, что она не выступает в виде силы, которую можно ощутить в обычном смысле. Тяга гравитации является центральным элементом нашего повседневного опыта, и электромагнитные силы между зарядами и магнитами тоже являются чем-то, что можно почувствовать. И хотя сильное взаимодействие проявляет себя на очень удаленной шкале, все же довольно легко понять силу, удерживающую ядро против электромагнитного отталкивания.

А вот слабое взаимодействие не используется, чтобы что-то удерживать вместе или отталкивать друг от друга. Вот почему большинство физиков отбросили приятный и неточный термин «фундаментальные силы» в пользу «фундаментальных взаимодействий». Вместо того чтобы тянуть или толкать частицы, слабое ядерное взаимодействие выполняет важную функцию по обеспечению превращений частиц: если быть более точным, она превращает частицы из семейства кварков в частицы из семейства лептонов. Это позволяет нижнему кварку (отрицательно заряжен) превращаться в верхний кварк (имеет положительный заряд), излучив электрон и третью частицу, известную как нейтрино. Или верхний кварк может превратиться в нижний, поглотив электрон и испустив антинейтрино. Эти превращения позволяют нейтронам превращаться в протоны, и наоборот.

Процесс, имеющий место в Солнце, включает в себя как раз последний вариант и становится обратной стороной явления, более известного как «бета-распад», когда нейтрон в ядре атома испускает электрон и превращается в протон. Бета-распад был известен с самого начала исследований радиоактивности, но его объяснение было раздражающим вызовом на заре квантовой теории, приводя к ярким анекдотам физики XX века.

Проблема с бета-распадом заключается в том, что электроны, испускаемые распадающимся ядром, возникают с широким спектром энергий (до крайне высоких значений). Такое не должно было быть возможным для реакции, включавшей лишь две частицы – законы сохранения энергии и сохранения импульса указывают, что возможно лишь одно значение энергии для отделяющегося электрона (как в случае с процессом «альфа-распада», где тяжелое ядро распадается, испуская ядро гелия: два протона и два нейтрона, скрепленных вместе). Объяснение широкого спектра значений энергии, получаемых при бета-распаде, долгое время загоняло в угол физиков и довело некоторых до предложения радикальных мер – отказа от идеи сохранения энергии как фундаментального физического принципа.

Решение было найдено молодым австрийским физиком Вольфгангом Паули. В 1930 году он предположил (в письме, посланном на конференцию, которую он пропустил из-за бала в Цюрихе), что в бета-распаде участвуют не две, а три частицы, – нейтрон, превращающийся в протон, электрон и третья, неуловимая частица с очень малой массой. Новой частице быстренько подобрали название – «нейтрино» (похоже на «маленькая и нейтральная» по-итальянски). Она уносит часть энергии, точное количество которой зависит от точного импульса электрона и нейтрино, когда они покидают ядро.

Введение нейтрино сначала показалось не менее отчаянным шагом, чем отказ от закона сохранения энергии. Паули сам писал другу: «Я сделал нечто ужасное. Я ввел частицу, которую невозможно поймать. Это нечто такое, что теоретик никогда не должен делать». В течение нескольких лет великий итальянский физик Энрико Ферми развил общее предположение Паули в полную и исключительно успешную математическую теорию бета-распада, после чего эта идея была быстро принята. Нейтрино Паули оказалось одним из трех (изначально было предложено нейтрино, мюон и тау-нейтрино), и, несмотря на все начальные сложности, в итоге оказалось возможным его обнаружить, что и было подтверждено Клайдом Коуэном[23] и Фредериком Райнесом[24] в 1956 году[25].

Какое все это имеет отношение к Солнцу? Ответ достаточно деликатен, но мы уже намекали на это несколько раз по ходу обсуждения раньше. Солнце подпитывается энергией от слияния ядер водорода, которые представляют единичные протоны, в ядра гелия, состоящие из двух протонов и двух нейтронов. Где-то в ходе этого процесса два протона должны обратиться в нейтроны, что делается возможным благодаря слабому ядерному взаимодействию и процессу «обратного бета-распада», упомянутого ранее: протон превращается в нейтрон, испуская при этом нейтрино[26]. В результате Солнце производит невероятное количество нейтрино, которые были обнаружены на Земле, и их измерения дают информацию как о ядерных реакциях в ядре Солнца, так и о свойствах самих нейтрино.

Превращение протонов в нейтроны внутри звезд является существенно важным для существования огромного количества элементов, с которыми мы имеем дело в повседневной жизни – кислород в воздухе, которым мы дышим, и вода, которую мы пьем, углерод в пище, которую мы едим, кремний в земле под нами. Когда очень тяжелая звезда выжигает большую часть водорода в своем ядре, она начинает реакцию слияния гелия в еще более тяжелые элементы. Когда гелия остается мало, очень тяжелые звезды начинают выжигать углерод и так далее по всей Периодической таблице элементов. На каждой стадии этого процесса энергия сильного взаимодействия, высвобождающаяся за счет слияния, уменьшается[27], пока кремний не будет превращаться в железо. Ядерная реакция слияния кремния в железо уже не дает никакой энергии, производство тепла, поддерживающего ядро звезды, останавливается. В этой точке процесса внешние слои звезды обрушиваются внутрь, чтобы произвести взрыв суперновой звезды, высвобождая так много энергии, что взрывающаяся звезда зачастую на некоторое время становится самой яркой в своей галактике.

В суперновой звезде большинство массы вырывается с огромной скоростью наружу в виде расширяющегося облака газа, унося с собой более тяжелые элементы, произведенные в ядре во время поздних стадий слияния. Эти облака газа расширяются, охлаждаются и взаимодействуют с окружающим газом, создавая сырье для следующих поколений звезд, а также скалистых планет, похожих на Землю, которые в основном сделаны из тяжелых элементов, созданных в ядре умирающей звезды.

Невероятное разнообразие веществ, которое мы видим на Земле – скалы и минералы, воздух, – всё построено из пепла мертвых звезд и создано с помощью всех четырех фундаментальных взаимодействий. Начиная с простых облаков водорода, сформировавшихся вскоре после Большого Взрыва, гравитация стягивает газ вместе, электромагнетизм сопротивляется коллапсу и нагревает газ, сильное ядерное взаимодействие освобождает огромное количество энергии в ядерном слиянии, и, наконец, слабое ядерное взаимодействие обеспечивает трансформацию частиц, превращает водород в более тяжелые и интересные элементы. Уберите хотя бы одно из этих фундаментальных взаимодействий, и наше повседневное существование станет невозможным.

Продолжение истории

Описанное выше ни в коем случае нельзя считать полной историей фундаментальной физики. Четыре фундаментальных взаимодействия, которые питают Солнце энергией, единственные, которые мы знаем, но

1 2 3 ... 73
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.


Партнер

Новые отзывы

  1. Фарида Фарида02 июль 14:00 Замечательная книга!!! Спасибо автору за замечательные книги, до этого читала книгу"Странная", "Сосед", просто в восторге.... Одна ошибка - Татьяна Александровна Шумкова
  2. Гость Алина Гость Алина30 июнь 09:45 Книга интересная, как и большинство произведений Н. Свечина ( все не читала).. Не понравилось начало: Зачем постоянно... Мертвый остров - Николай Свечин
  3. Гость Татьяна Гость Татьяна30 июнь 08:13 Спасибо.  Интересно ... Дерзкий - Мария Зайцева
Все комметарии
Новое в блоге