Динамическое хеджирование: Управление риском простых и экзотических опционов - Нассим Николас Талеб
Книгу Динамическое хеджирование: Управление риском простых и экзотических опционов - Нассим Николас Талеб читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!
Шрифт:
Интервал:
Закладка:
с такими значениями wi, чтобы их произведение было равно p. Автор не видел ни одной такой сделки, но необходимо проанализировать ее, чтобы понять разницу между средним геометрическим и арифметическим, поскольку среднее геометрическое чаще используется на финансовых рынках.
● Среднее арифметическое:
с такими значениями wi, чтобы их сумма была равна n.
Следующее упражнение, как и упражнение в главе 22, поможет понять некоторые трудности, связанные с ценообразованием опционов.
Возьмем среднее значение за 4 дня.
Процесс принимает экспоненциальную форму, и определенные лаконичные результаты без труда можно получить с помощью простой формулы Блэка–Шоулза–Мертона.
Среднее арифметическое, однако, более информативно:
Точно так же, как если бы пользователь смотрел на линейную комбинацию опционов на независимые активы с одинаковой волатильностью (известно, что z1, z2, … zn являются независимыми). Здесь мало логнормальности, т. к. процесс не может быть обобщен в виде St = S0exp(что-то). Иными словами, нельзя получить dS/S – нормально распределенную переменную.
Это осложнение несколько оживляет картину. Как трейдера автора этой книги азиатские опционы быстро вгоняют в сон. Как любитель теории вероятностей он находит процесс довольно необычным[210].
Оставшаяся часть главы посвящена нескольким важным моментам, касающимся хеджирования. Существующие в настоящее время методы ценообразования нацелены на то, чтобы обойти процесс вычисления среднего значения ∑wiSi путем нахождения какой-либо формы, позволяющей отслеживать расхождение между логнормальным распределением и средним значением.
Читатель будет рад узнать, что такое расхождение – это перекос волатильности. Большинство методов обхода нацелено на репликацию распределения за счет обнаружения его моментов и использования функции логнормального распределения, удовлетворяющей таким моментам. Однако, как будет показано далее, большинство трейдеров по-прежнему довольствуются методом Монте-Карло.
Сравнивая распределение средних с распределением базового актива, можно увидеть, что отношение вторых моментов распределений близко к
Таким образом, мгновенную локальную дисперсию можно уменьшить с помощью пропорционального хеджирования равных сумм.● Трейдер покупает азиатский опцион и продает соответствующий ванильный опцион в правильном гамма-нейтральном соотношении (примерно 1,73 к 1). На рис. 23.6 представлено сравнение двух позиций, каждая из которых независима от другой.
● На рис. 23.7 показан спред двух опционов; как и ожидалось, имеет место короткий перекос волатильности.
Хороший способ разобраться в этом эффекте – обратиться к понятию компаундинга. Сумма экспонент – это то же самое, что экспонента суммы. Сумма экспонент, скажем exp(n) + exp(m), равная экспоненте exp(a + b), не будет расти так же, как последняя при умножении на 2. Сравните результаты: exp(2n) + exp(2m) и exp(2 × (a + b)). Читатель может попробовать проделать это в качестве упражнения, чтобы увидеть одну из выпуклых характеристик экспоненты.
При ценообразовании азиатских опционов мы рекомендуем учитывать волатильность и процентные ставки (т. е. всю кривую), потому что имеет значение каждый интервал. Кроме того, при росте волатильности выше 30 % рекомендуется использовать метод Монте-Карло. В большинстве других случаев можно применять модель ценообразования, основанную на обычных приблизительных оценках. Более высокая точность при аппроксимировании несущественна по сравнению с точностью, потерянной при использовании гомоскедастической модели.
В заключение сделаем еще несколько замечаний.
● Разбивка на интервалы. Азиатские опционы требуют отслеживания интервальных вег и распределения форвардов. Как ни странно, средняя точка для форвардных хеджей визуально напоминает точку момента остановки.
● Тонкость. Среднее арифметическое необратимо из-за неравенства Дженсена. Среднее значение USD-DEM не равно 1/среднее значение DEM-USD.
Часть IV
Модули
Модуль A
Броуновское движение в электронной таблице: краткое руководство
Данный модуль представляет собой введение в теорию случайных блужданий.
■ При ценообразовании ценных бумаг случайное блуждание обуславливает изменение за определенный период их цены в той части, в которой оно носит случайный характер. Изменение цены в той части, в которой оно не рассматривается как случайное, называется дрейфом.
Для простоты предположим, что поведение финансовых инструментов определяется случайным процессом, который можно смоделировать в электронной таблице.
Броуновское движение = случайное блуждание + дрейф.
Упражнения, предлагаемые в данном разделе, посвящены элементу случайности. Дрейф будет рассмотрен в модуле B.
Классическое случайное блуждание: один актив
Представим себе пьяницу, бредущего по Мэдисон-авеню. Выпил он крепко и не помнит, где был только что. Он может идти только вперед, причем с неизменной скоростью. При каждом шаге он будет продвигаться вперед, отклоняясь то вправо, то влево: шаг вперед + шаг влево или вперед + шаг вправо, как показано на рис. A.1.
Сделав 10 шагов, наш пьяница использует следующий набор комбинаций: 10 шагов вперед + максимум 10 шагов влево, 10 шагов вперед + максимум 10 шагов вправо, а также все промежуточные варианты.
Предполагается, что на рынке ценных бумаг происходит такое же случайное блуждание, с одной оговоркой: длина шагов увеличивается по мере роста цены актива. Наглядное представление об этой концепции дает моделирование случайного блуждания в электронной таблице Excel[211].
Откройте новую электронную таблицу.
Инструменты → Анализ данных → Генератор случайных чисел.
Количество переменных = 1.
Количество случайных чисел = 248.
Распределение = нормальное.
Среднее значение = 0.
Стандартное отклонение = 1.
Диапазон выходных данных = B4.
→ OK.
Exсel сгенерирует 248 случайных чисел. Среднее значение будет близко к нулю. Эти числа будут называться нормально распределенными вокруг среднего значения 0 при стандартном отклонении 1.
В ячейку A3 введите число 100. Это будет начальная цена актива. Далее в ячейке A2 укажите волатильность актива (скажем, 0,157). Это будет означать, что стандартное отклонение составит
(дневной эквивалент 1 % из расчета 248 дней в году). В ячейку A4 введите следующую формулу:A3 × EXP(–0,5.$A$2^2 × (1/248) + $A$2 × (1/15,7) × B4).
Cкопируйте ее в ячейку A251. Это будет путь (последовательность) доходов за день:
St = St–1 × Exp (–1/2 σ2 t + σ ×
× Wt).Приравнивание значений ячеек в соответствии с формулой выполняется следующим образом:
St = A4;
St–1 = A3;
= 1/248; = SQRT(1/248); поскольку каждая строка будет отражать один день, то = SQRT(1/15,7);Wt – случайное число; среднее значение = 0, среднее положительное значение = 1, среднее отрицательное значение = –1.
Теперь выделим интервал (A3:А251) и построим график. Результат показан на рис. А.2.
При моделировании процесса в компьютере повторение генерирования случайных чисел для получения новой волны «белого шума» создает новые пути (последовательности).
По мере увеличения волатильности амплитуда движений будет расти.
Несколько вопросов
Вопрос 1 (который задают всегда). Как перейти от пьяницы, все шаги которого имеют одинаковую длину, к шагам разной длины Wt? (Wt может быть любым числом от минус бесконечности до плюс бесконечности, имеющим
Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.
- 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
- 2. Просьба отказаться от оскорблений, угроз и запугиваний.
- 3. Просьба отказаться от нецензурной лексики.
- 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.
Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.
Оставить комментарий
-
Гость Татьяна23 август 09:10 Я очень полюбила книги этого писателя. Нет ничего добрее, жизненнее и оптимистичнее, как бы странно это не звучало. Спасибо. ... Здесь была Бритт-Мари - Фредрик Бакман
-
Гость Татьяна20 август 09:05 Замечательная книга, захватывающая. Спасибо огромное за возможность прочитать книгу. ... Змей-соблазнитель - Татьяна Полякова
-
Батарея09 август 21:50 Книга замечательная, увлекательная, всем советую прочитать. Отдельное спасибо автору за замечательный слог... Мастер не приглашает в гости - Яна Ясная