KnigkinDom.org» » »📕 Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир

Книгу Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

1 ... 30 31 32 33 34 35 36 37 38 ... 121
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

92 93 94 95 96 97 98 99 100 101

102 103 104 105 106 107 108 109 110 111

Теперь, начиная с 2 и сохраняя при этом саму двойку в неприкосновенности, уберем каждое второе число после 2.

2 3 . 5 . 7 . 9 . 11

. 13 . 15 . 17 . 19 . 21

. 23 . 25 . 27 . 29 . 31

. 33 . 35 . 37 . 39 . 41

. 43 . 45 . 47 . 49 . 51

. 53 . 55 . 57 . 59 . 61

. 63 . 65 . 67 . 69 . 71

. 73 . 75 . 77 . 79 . 81

. 83 . 85 . 87 . 89 . 91

. 93 . 95 . 97 . 99 . 101

. 103 . 105 . 107 . 109 . 111

Первое выжившее число после двойки — это 3. Сохраняя теперь 3 в неприкосновенности, удалим каждое третье число после 3, если оно еще не удалено. Получим

2 3 . 5 . 7 . . . 11

. 13 . . . 17 . 19 . .

. 23 . 25 . . . 29 . 31

. . . 35 . 37 . . . 41

. 43 . . . 47 . 49 . .

. 53 . 55 . . . 59 . 61

. . . 65 . 67 . . . 71

. 73 . . . 77 . 79 . .

. 83 . 85 . . . 89 . 91

. . . 95 . 97 . . . 101

. 103 . . . 107 . 109 . 111

Первое выжившее число после тройки — это 5. Сохраняя теперь 5 в неприкосновенности, удалим каждое пятое число после 5, если оно еще не удалено. Получим

2 3 . 5 . 7 . . . 11

. 13 . . . 17 . 19 . .

. 23 . . . . . 29 . 31

. . . . . 37 . . . 41

. 43 . . . 47 . 49 . .

. 53 . . . . . 59 . 61

. . . . . 67 . . . 71

. 73 . . . 77 . 79 . .

. 83 . . . . . 89 . 91

. . . . . 97 . . . 101

. 103 . . . 107 . 109 . 111

Первое выжившее число — это 7. Следующий шаг состоит в том, чтобы, сохраняя теперь 7 в неприкосновенности, удалить каждое седьмое число после 7, если его еще не удалили до этого. Первое число, которое выживает после этого, — 11. И так далее.

Если проводить эту процедуру бесконечно, то оставшимися числами будут все простые числа. В этом и состоит «решето Эратосфена». Если остановиться прямо перед тем, как пришло время обрабатывать простое число p — другими словами, прямо перед тем, как надо будет удалять каждое p-е число, если оно еще не было удалено, — то мы получим все простые числа, меньшие p2. Поскольку выше мы остановились прямо перед обработкой семерки, у нас имеются все простые до 72, т.е. 49. После этого числа остаются и не простые числа, такие как 77.


III.

Решето Эратосфена — вещь достаточно простая. И ему уже 2230 лет. Как же оно перенесет нас в середину XIX века, к глубоким результатам в теории функций? А вот как.

Я собираюсь повторить только что проведенную процедуру. (Именно по этой причине мы разобрали ее столь тщательно.) Но на этот раз я применю ее к дзета-функции Римана, которую мы определили в конце главы 5. Дзета-функция от некоторого аргумента s, большего единицы, записывается как

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Стоит заметить, что такая форма записи предполагает выписывание всех положительных целых чисел — в точности как в начале наших действий с решетом Эратосфена (с тем только исключением, что на сей раз включена 1).

Сделаем такое: умножим обе части равенства наПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. Получим

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

где мы пользовались 7-м правилом действий со степенями (которое говорит, например, что 2s умножить на 7s равно 14s). А теперь вычтем второе из этих выражений из первого. В одну из левых частей входит ζ(s) с множителем 1, а в другую — та же ζ(s) с множителемПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. Вычитая, получаем

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Вычитание устранило из бесконечной суммы все члены с четными числами. Остались только члены, в которые входят нечетные числа.

Вспоминая решето Эратосфена, умножим теперь обе части порченного равенства наПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике, руководствуясь тем, что 3 — это первое выжившее число в правой части:

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Теперь вычтем это выражение из того, которое мы получили ранее. При вычитании левых частей будем рассматриватьПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике как неделимую штуку, — просто как некоторое число (каковым оно, конечно, и является при любом заданном s). Вся эта штука входит в левую часть одного выражения с множителем 1, а в левую часть другого — с множителемПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. Вычитая, получаем

1 ... 30 31 32 33 34 35 36 37 38 ... 121
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.


Партнер

Новые отзывы

  1. Гость Светлана Гость Светлана26 июль 20:11 Очень понравилась история)) Необычная, интересная, с красивым описанием природы, замков и башен, Очень переживала за счастье... Ледяной венец. Брак по принуждению - Ульяна Туманова
  2. Гость Диана Гость Диана26 июль 16:40 Автор большое спасибо за Ваше творчество, желаю дальнейших успехов. Книга затягивает, читаешь с удовольствием и легко. Мне очень... Королевство серебряного пламени - Сара Маас
  3. Римма Римма26 июль 06:40 Почему героиня такая тупая... Попаданка в невесту, или Как выжить в браке - Дина Динкевич
Все комметарии
Новое в блоге