Остров знаний. Пределы досягаемости большой науки - Марсело Глейзер
Книгу Остров знаний. Пределы досягаемости большой науки - Марсело Глейзер читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!
Шрифт:
Интервал:
Закладка:
В дальнейшем Белл добавил в свой эксперимент еще один вариант.[145] Предположим, что мы можем измерить спин частицы в любом направлении, а не только в вертикальном. Давайте установим два направления: вертикальное и с 30-градусным отклонением от вертикальной оси. Каждый детектор можно настроить таким образом, чтобы он измерил одно из двух возможных направлений. Обозначим вертикальное направление для детекторов как Л| и П|, а наклонное – как Л/ и П/. Итого два детектора могут быть ориентированы четырьмя возможными способами: (Л|; П|), (Л|; П/), (Л/; П|) или (Л/; П/). Так как электроны могут быть направлены по этим осям только вниз или вверх, детекторы могут показывать только два значения: +1 и –1. Следовательно, после установки детектора в нужном направлении каждое измерение будет давать нам пару возможных чисел: (+1; +1), (+1; –1), (–1; +1) или (–1; –1).
Обратите внимание, что для случаев (Л|; П|) и (Л/; П/), при которых оба детектора имеют одно направление, результаты определяются сохранением момента количества движения – фундаментальным законом природы, который говорит, что значение вращения в физической системе, не подвергающейся внешнему воздействию, остается неизменным. Если Л| = +1, то П| = –1, и наоборот. Если Л/ = +1, П/ = –1, и наоборот. В этом случае между двумя частицами наблюдается идеальная корреляция, как в случаях, которые мы обсуждали выше.
Четыре независимых результата становятся возможными, если мы предполагаем, что между разными направлениями спина частиц, попадающих на детекторы Л и П, отсутствует корреляция в соответствии с принципом локальности, который Эйнштейн и Шрёдингер так хотели увидеть воплощенным в Природе. Мы ожидаем, что со смешанными комбинациями (Л|; П/) и (Л/; П|) не произойдет ничего особенного.
Учитывая четыре возможных ориентации двух детекторов, экспериментатор может составить таблицу с результатами многочисленных повторений данного опыта и записывать в нее пары чисел для каждого измерения.[146] Иными словами, каждое повторение опыта соответствует четырем отдельным измерениям, по одному для каждой схемы ориентации детекторов. Кроме того, экспериментатор может изучить соотношения между парами значений в каждом опыте. Его может заинтересовать следующее соотношение, которое мы назовем С:
C = (Л| × П|) − (Л/ × П|) + (Л| × П/) + (Л/ × П/) = (Л| − Л/) × П| + (Л| + Л/) × П/.
Последнее выражение было получено путем перестановки условий. Экспериментатор рассчитывает С для каждого опыта, включающего в себя четыре возможных способа ориентации детекторов и расчет спина обеих частиц.[147] Если локальные теории верны, результаты будут таковы: так как Л| и Л/ могут принимать только значения +1 или –1, одно из двух условий в скобках пропадает, а второе принимает значение +2 или –2. Например, если Л| = +1, а Л/= –1, первое условие будет равно +2, а второе пропадет. Если же Л| = –1, а Л/ = +1, первое условие будет равняться –2, а второе можно будет вычеркнуть. Так как П| и П/ в каждом из опытов тоже принимают значения +1 или –1, общее значение С всегда будет составлять либо +2, либо –2.
Экспериментатор рассчитывает и записывает С для каждого опыта. Предположим, что он делает это N раз. Затем он может рассчитать среднее значение С, Cср = (С1 + С2 +… + СN)/N, где С1 будет означать С для опыта 1, С2 – для опыта 2 и т. д. до последнего СN. Так как в каждом из случаев С может принимать только значения –2 или +2, Сср является числом в промежутке от –2 до +2. Мы можем записать это так: –2 ≤ Сср ≥ +2. Например, если после четырех попыток экспериментатор получит С1 = +2, С2 = –2, С3 = +2 и С4 = +2, он рассчитает Сср как Сср = (2–2 + 2 + 2) / 4 = 1.
Таким образом, локальные теории предсказывают, что среднее значение С всегда будет находиться в диапазоне от –2 до +2. Однако если мы проводим расчет С с использованием квантовой механики, мы можем найти более сильную корреляцию между разнонаправленными частицами и, соответственно, получить другой результат: измерения спина двух частиц, движущихся в различных направлениях, не полностью независимы друг от друга. В результате значение С может выходить за пределы диапазона от –2 до +2. При некотором угловом отклонении от вертикали квантовые корреляции между спинами частиц оказываются больше, чем предсказывают локальные теории. Иными словами, в квантовой механике неравенство –2 ≤ Сср ≥ +2 должно быть нарушено. Белл разработал однозначный экспериментальный способ обнаружить разницу между традиционной квантовой механикой и модификациями со скрытыми переменными, предполагающими локальность в смысле, установленном ЭПР.
Пока я писал эти строки, группа Цайлингера вместе с коллегами из других стран, включая Национальный институт стандартов и технологий США и специалистов из Германии, провела уникальный эксперимент со связанными фотонами, подтверждающий, что в Природе отсутствуют мистические «влияния на расстоянии».[148]
Новизна этого опыта состояла в том, что в нем рассматривались одновременно все фотоны, участвующие в эксперименте, чего до сегодняшнего дня добиться было трудно (раньше какая-то часть фотонов не попадала на детектор и поэтому не учитывалась). Это очень важный аспект, так как он исключает возможную предвзятость в отношении как источника, так и улавливающего фотоны оборудования (желание принимать к рассмотрению только «важные» фотоны). Соответственно, результат становится более объективным. Эксперимент Цайлингера стал последним в длинном ряду опытов, которые начались еще в 1972 году, когда Джон Клоузер и Стюард Фридман из Университета Калифорнии в Беркли обнаружили случай нарушения неравенства Белла, соответствующий принципам квантовой механики. В начале 1980-х этим вопросом занялись Алейн Аспект и его команда, а в 1990-х эстафету перенял Цайлингер со своими коллегами. Результаты впечатляли: в каждом опыте неравенство Белла не просто нарушалось, нарушение полностью соответствовало квантовой механике.
Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.
- 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
- 2. Просьба отказаться от оскорблений, угроз и запугиваний.
- 3. Просьба отказаться от нецензурной лексики.
- 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.
Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.
Оставить комментарий
-
Гость Наталья17 июль 12:42 Сюжет увлекательный и затейный,читается легко,но кто убийца,сразу было понятно.... Дорога к Тайнику. Часть 1 - Мария Владимировна Карташева
-
Гость Дарья16 июль 23:19 Отличная книга. Без сцен 18+, что приятно. Легкий и приятный сюжет. Благоразумная ГГ, терпеливый и сдержанный ГГ. Прочла с... Королева драконов - Анна Минаева
-
Dora16 июль 17:16 Типичная история: она — многодетная, затюканная бытом. У нее имеется богатый и красивый муж, у которого завелась любовница, а... Я беременна от вашего мужа - Ольга Ивановна Коротаева