KnigkinDom.org» » »📕 Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос

Книгу Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

1 ... 64 65 66 67 68 69 70 71 72 ... 103
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Напоследок взглянем на еще один бесконечный ряд, который тоже позволит нам прикоснуться к тайнам простых чисел. Простой гармонический ряд — это дроби с единичным числителем, знаменатели которых суть простые числа:

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

По мере увеличения чисел простые числа встречаются все реже и реже, так что можно было бы ожидать, что у этого ряда в конце концов не хватит сил, чтобы достичь бесконечности. Но — вы не поверите — он ее достигает! Этот впечатляющий результат, идущий вразрез с интуицией, заставляет нас осознать мощь и важность простых чисел. На них можно смотреть не только как на строительные элементы для натуральных чисел, но и как на строительные элементы, слагающие бесконечность.

Глава 8
Золотая лихорадка

Автор встречает лондонца с клешней, утверждающего, что он разгадал секрет красивых зубов.


Как-то раз, когда я был в гостях у Эдди Левина, дантиста на пенсии, он дал мне листок бумаги и попросил написать мое имя заглавными буквами. Левину 75 лет, у него чопорный вид, седые волосы топорщатся над продолговатым лбом. Он живет в северном Лондоне — на улице, которая является образчиком тех пригородов, где селятся преуспевающие и консервативные британцы. Я взял листок и написал: ALEX BELLOS.

Левин взял инструмент из нержавеющей стали, по виду напоминавший небольшую клешню с тремя зубцами. Твердой рукой он приложил ее к листу бумаги и принялся анализировать мою надпись. Он установил свой инструмент над буквой E в моем имени, при этом он был так сосредоточен, что ему позавидовал бы и раввин, делающий обрезание.

— Неплохо, — сказал он.

Этот инструмент — собственное изобретение Левина. Три зубца расположены так, что, когда инструмент раскрыт, их концы остаются на одной линии, причем расстояния между ними находятся в том же отношении друг к другу, как когда инструмент закрыт. Левин разработал его таким образом, что расстояние между средним и верхним зубцами всегда в 1,618 раз больше расстояния между средним и нижним. Поскольку данное число более известно как золотое сечение, он назвал свой инструмент калибром золотого сечения. (Среди других синонимичных названий числа 1,618 имеются золотая пропорция, божественная пропорция и φ, или фи.) Левин наложил свой калибр на написанную мной букву E так, чтобы кончик одного зубца пришелся на верхнюю горизонтальную черту в букве E, кончик среднего — на среднюю горизонтальную черту, а нижний оказался бы на нижней черте. Я полагал, что, выписывая заглавную букву E, я помещаю среднюю черту на равном расстоянии между верхом и низом, но калибр Левина продемонстрировал, что я бессознательно помещаю черту несколько выше середины — так, что она разбивает полную высоту буквы на два отрезка, отношение длин которых равно 1,618. Хотя я написал свое имя довольно небрежно, не успев ни о чем подумать, тем не менее оказалось, что я попал в число соблюдающих золотую пропорцию с поразительной точностью.

Левин улыбнулся и перешел к букве S. Он перенастроил свой калибр так, что зубцы касались самого верхнего и самого нижнего окончания буквы S, и, к моему полному изумлению, средний зубец попал точно на изгиб в букве S.

Точное попадание, — спокойно заметил Левин. — В почерк каждого человека заложена золотая пропорция.

* * *

Золотая пропорция — это число, которое описывает отношение, возникающее при делении отрезка на две части таким образом, что отношение всего отрезка к большему из двух равно отношению большего к меньшему. Другими словами, когда отношение А + В к А равно отношению А к В:

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Деление отрезка на две части указанным образом называется золотым сечением. При этом число фи — отношение между большим и меньшим отрезками — можно вычислить, и оно равно (1 + 5√2√2√2√2)/2. Это иррациональное число, десятичное разложение которого начинается как

1,61803398874989484820…

Древних греков зачаровывало число фи. Они познакомились с ним, рассматривая пятиконечную звезду (пентаграмму), которая являлась почитаемым символом Пифагорейского братства. Евклид писал о «делении отрезка в крайнем и среднем отношении», он предложил метод построения правильного пятиугольника с помощью циркуля и линейки. Начиная с эпохи Возрождения это число интриговало как художников, так и математиков.

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Пятиконечная звезда — мистический символ, рожденный в древности, — содержит в себе золотое сечение


Ключевой работой, посвященной золотому сечению, была написанная в 1509 году книга выдающегося итальянского математика францисканца Луки Пачоли (1445–1517) «Божественная пропорция», где описывались многие случаи появления этого числа из геометрических построений. Иллюстрировал книгу друживший с Пачоли Леонардо да Винчи. Итак, Пачоли пришел к выводу, что число фи — послание Бога, источник тайного знания о внутренней красоте вещей.

* * *

С математической точки зрения число фи интересно еще и потому, что оно связано с самой знаменитой последовательностью в математике — последовательностью Фибоначчи. Эта последовательность начинается с чисел 0 и 1, а далее каждый следующий член представляет собой сумму двух предыдущих: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377… Вот как получаются эти числа:

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Прежде чем говорить о том, как связаны число фи и последовательность Фибоначчи, давайте изучим саму последовательность. Природа тяготеет к числам Фибоначчи. Заглянув в сад, вы обнаружите, что у большинства цветков число лепестков равно числам Фибоначчи. У лилий и ирисов — три лепестка, у гвоздик и лютиков — пять, у дельфиниума — восемь, у ноготков — 13, у астр — 21, а у маргариток — 55 или 89. Каждый цветок может и не иметь всегда в точности столько лепестков, но в среднем их число будет одним из чисел Фибоначчи. Например, на стебле клевера обычно три листочка — это тоже число Фибоначчи. Лишь очень редко у клевера бывает четыре листочка, поэтому четырехлистный клевер считается особенным. Они встречаются редко как раз потому, что 4 — не число Фибоначчи.

Числа Фибоначчи встречаются также в спиральных узорах, которые образуют чешуйки сосновых шишек и ананасов, соцветия цветной капусты и семена подсолнухов. Можно пересчитывать витки спирали по часовой стрелке или против — все, что вы насчитаете в любом направлении, будет числами Фибоначчи. На ананасах, как правило, 5 и 8 спиралей, или же 8 и 13. На еловых шишках их обычно 8 и 13. У подсолнухов спиралей может быть 21 и 34 или же 34 и 55 — хотя известны примеры с 144 и 233 спиралями. Чем больше семян в подсолнухе, тем больше оказывается число спиралей.

1 ... 64 65 66 67 68 69 70 71 72 ... 103
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.


Партнер

Новые отзывы

  1. Kelly Kelly11 июль 05:50 Хорошо написанная книга, каждая глава читалась взахлёб. Всё описано так ярко: образы, чувства, страх, неизбежность, словно я сама... Не говори никому. Реальная история сестер, выросших с матерью-убийцей - Грегг Олсен
  2. Аноним Аноним09 июль 05:35 Главная героиня- Странная баба, со всеми переспала. Сосед. Татьяна Шумакова.... Сосед - Татьяна Александровна Шумкова
  3. ANDREY ANDREY07 июль 21:04 Прекрасное произведение с первой книги!... Роботам вход воспрещен. Том 7 - Дмитрий Дорничев
Все комметарии
Новое в блоге