KnigkinDom.org» » »📕 Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир

Книгу Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

1 ... 75 76 77 78 79 80 81 82 83 ... 121
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Первый член в бесконечной сумме: берем 1 из каждой скобки. Это даст бесконечное произведение 1×1×1×1×1×…, значение которого есть, конечно, просто 1.

Второй член: берем 1 из всех скобок, кроме первой. Из первой же возьмем. Это даст бесконечное произведение×1×1×1×1×…, которое равно просто.

Третий член: берем 1 из каждой скобки, кроме второй. А из второй возьмем. Это даст бесконечное произведение 1××1×1×1×…, что равно просто.

Четвертый член… Я думаю, понятно, что, если брать 1 из каждой скобки, кроме n-й, мы получим слагаемое равное, где p — n-е простое число. Итак, получилась бесконечная сумма вида (15.3):

Но это еще не конец. При перемножении скобок возникает сумма всех возможных членов, получаемых взятием одного числа из каждой скобки. Предположим, мы выбрали из первой скобки, из второй и 1 из всех остальных. Это дает××1×1×1×…, что равно. Похожие вещи мы получим из каждой возможной пары выборов не-единиц. Выбирая из третьей скобки и из шестой, а единицы из всех остальных, получаем член, равный.

(Заметим, что здесь работают два простых правила арифметики. Одно — это правило знаков, гласящее, что минус умножить на минус дает плюс, а другое — 7-е правило действий со степенями, согласно которому (x×y)n = xn×yn.)

Так что наряду с членами, уже собранными в выражении (15.3), имеется новый набор, каждый член в котором происходит из каждой пары простых чисел, как 5 и 13, и которые все входят со знаком плюс. Таким образом, выражение (15.3) разрослось до такого:

где каждое число во второй строке есть произведение двух различных простых.

А ведь мы едва начали нашу деятельность по перемножению бесконечного числа скобок. Следующий шаг состоит в том, чтобы перебрать все возможные способы выбрать три не-единицы (при всех остальных единицах). Например, 1××1×1×××1×1×…, из чего возникает.Теперь результат разрастается до

1 ... 75 76 77 78 79 80 81 82 83 ... 121
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.


Партнер

Новые отзывы

  1. Гость Татьяна Гость Татьяна25 ноябрь 17:17 Книга  очень понравилась,👍но без подробных описаний в постеле, было бы намного лучше. ... (не) Моя Жена - Елена Байм
  2. Гость Елизавета Гость Елизавета25 ноябрь 09:10 Самая лучшая интересная захватывающая книга из всех попаданцев. Невозможно оторваться. И слушала и читала. Ждала нового выпуска... Мечников. Том 12. Щит мира - Игорь Алмазов
  3. Гость Светлана Гость Светлана23 ноябрь 13:52 Как раз тот случай, когда героиня кроме раздражения ничего не вызывает.  Читала другие книги Майер и ощущение, что писал кто -то... Ты еще маленькая - Кристина Майер
Все комметарии
Новое в блоге