Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир
Книгу Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!
Шрифт:
Интервал:
Закладка:
Первый член в бесконечной сумме: берем 1 из каждой скобки. Это даст бесконечное произведение 1×1×1×1×1×…, значение которого есть, конечно, просто 1.
Второй член: берем 1 из всех скобок, кроме первой. Из первой же возьмем. Это даст бесконечное произведение×1×1×1×1×…, которое равно просто.
Третий член: берем 1 из каждой скобки, кроме второй. А из второй возьмем. Это даст бесконечное произведение 1××1×1×1×…, что равно просто.
Четвертый член… Я думаю, понятно, что, если брать 1 из каждой скобки, кроме n-й, мы получим слагаемое равное, где p — n-е простое число. Итак, получилась бесконечная сумма вида (15.3):
Но это еще не конец. При перемножении скобок возникает сумма всех возможных членов, получаемых взятием одного числа из каждой скобки. Предположим, мы выбрали из первой скобки, из второй и 1 из всех остальных. Это дает××1×1×1×…, что равно. Похожие вещи мы получим из каждой возможной пары выборов не-единиц. Выбирая из третьей скобки и из шестой, а единицы из всех остальных, получаем член, равный.
(Заметим, что здесь работают два простых правила арифметики. Одно — это правило знаков, гласящее, что минус умножить на минус дает плюс, а другое — 7-е правило действий со степенями, согласно которому (x×y)n = xn×yn.)
Так что наряду с членами, уже собранными в выражении (15.3), имеется новый набор, каждый член в котором происходит из каждой пары простых чисел, как 5 и 13, и которые все входят со знаком плюс. Таким образом, выражение (15.3) разрослось до такого:
где каждое число во второй строке есть произведение двух различных простых.
А ведь мы едва начали нашу деятельность по перемножению бесконечного числа скобок. Следующий шаг состоит в том, чтобы перебрать все возможные способы выбрать три не-единицы (при всех остальных единицах). Например, 1××1×1×××1×1×…, из чего возникает.Теперь результат разрастается до
Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.
- 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
- 2. Просьба отказаться от оскорблений, угроз и запугиваний.
- 3. Просьба отказаться от нецензурной лексики.
- 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.
Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.
Оставить комментарий
-
Гость Гость04 ноябрь 15:58
Мне во всех романах не нравится,что автор лицо мордой называет,руки лапками,это странно звучит...
Приличной женщине нельзя... - Ашира Хаан
-
Гость Наталья04 ноябрь 04:18
Благодарю ...
Таежная кровь - Владимир Топилин
-
Гость Наталья03 ноябрь 04:49
Здравствуйте. Потрясающий финал великолепной трилогии! Очередной шедевр! Даже не замечаешь, как погружается в произведение, сюжет...
Месяц за Рубиконом - Сергей Лукьяненко
