KnigkinDom.org» » »📕 Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир

Книгу Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

1 ... 75 76 77 78 79 80 81 82 83 ... 121
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Первый член в бесконечной сумме: берем 1 из каждой скобки. Это даст бесконечное произведение 1×1×1×1×1×…, значение которого есть, конечно, просто 1.

Второй член: берем 1 из всех скобок, кроме первой. Из первой же возьмемПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. Это даст бесконечное произведениеПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике×1×1×1×1×…, которое равно простоПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Третий член: берем 1 из каждой скобки, кроме второй. А из второй возьмемПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. Это даст бесконечное произведение 1×Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике×1×1×1×…, что равно простоПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Четвертый член… Я думаю, понятно, что, если брать 1 из каждой скобки, кроме n-й, мы получим слагаемое равноеПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике, где p — n-е простое число. Итак, получилась бесконечная сумма вида (15.3):

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Но это еще не конец. При перемножении скобок возникает сумма всех возможных членов, получаемых взятием одного числа из каждой скобки. Предположим, мы выбралиПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике из первой скобки,Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике из второй и 1 из всех остальных. Это даетПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике×Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике×1×1×1×…, что равноПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. Похожие вещи мы получим из каждой возможной пары выборов не-единиц. Выбирая из третьей скобкиПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике иПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике из шестой, а единицы из всех остальных, получаем член, равныйПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

(Заметим, что здесь работают два простых правила арифметики. Одно — это правило знаков, гласящее, что минус умножить на минус дает плюс, а другое — 7-е правило действий со степенями, согласно которому (x×y)n = xn×yn.)

Так что наряду с членами, уже собранными в выражении (15.3), имеется новый набор, каждый член в котором происходит из каждой пары простых чисел, как 5 и 13, и которые все входят со знаком плюс. Таким образом, выражение (15.3) разрослось до такого:

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

где каждое число во второй строке есть произведение двух различных простых.

А ведь мы едва начали нашу деятельность по перемножению бесконечного числа скобок. Следующий шаг состоит в том, чтобы перебрать все возможные способы выбрать три не-единицы (при всех остальных единицах). Например, 1×Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике×1×1×Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике×Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике×1×1×…, из чего возникаетПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.Теперь результат разрастается до

1 ... 75 76 77 78 79 80 81 82 83 ... 121
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.


Партнер

Новые отзывы

  1. Римма Римма20 сентябрь 12:27 Много ненужных пояснений и отступлений. Весь сюжет теряет свою привлекательность. Героиня иногда так тупит, что читать не... Хозяйка приюта для перевертышей и полукровок - Елена Кутукова
  2. Гость Ёжик Гость Ёжик17 сентябрь 22:17 Мне понравилось! Короткая симпатичная история любви, достойные герои, умные, красивые, притягательные. Надоели уже туповатые... Босс. Служебное искушение - Софья Феллер
  3. Римма Римма15 сентябрь 19:15 Господи... Три класса образования. Моя восьмилетняя внучка пишет грамотнее.... Красавица для Монстра - Слава Гор
Все комметарии
Новое в блоге