Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Леонард Сасскинд
Книгу Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Леонард Сасскинд читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!
Шрифт:
Интервал:
Закладка:
Всё, находящееся внутри шкатулки с непроницаемыми стенами, можно описать посредством битов информации, хранящихся в пикселах на ее стенах.
Во время чилийской автобусной экскурсии 1989 года я не понял, почему Клаудио Тейтельбойм так восхищался антидеситтеровским пространством. Черные дыры в шкатулке — ну и что? Мне понадобилось восемь лет, чтобы уловить суть, — восемь лет и еще один южноамериканский физик, на этот раз аргентинский.
Удивительные открытия Малдасены
Хуан Малдасена — полная противоположность Клаудио Тейтельбойму. Он невысок и гораздо хладнокровнее. Я не могу себе представить его гоняющим на автомобиле по Сантьяго в поддельной военной форме. Но как у физика у него нет недостатка в храбрости. В 1977 году он поставил себя под удар, сделав невероятно смелое заявление, которое казалось почти таким же сумасшедшим, как моя дикая поездка с Клаудио. Фактически Малдасена доказывал, что два математических мира, которые кажутся совершенно непохожими, на самом деле являются в точности и одним и тем же. Один мир имел четыре пространственных измерения и одно временное (4 + 1), другой был (3 + 1) — мерным и больше напоминал мир нашего повседневного опыта. Я возьму на себя смелость упростить эту историю, с тем чтобы ее было проще визуализировать, и в каждом случае уменьшу количество измерений на одно. Поэтому я буду говорить, что некоторая воображаемая версия Флэтландии — (2 + 1) — мерного мира — в определенном смысле эквивалентна антидесситтеровскому миру с (3 + 1) измерениями.
Как такое вообще возможно? Самое явное свойство пространства — это количество его измерений. Неспособность распознавать размерность пространства означала бы крайне опасную степень нарушения восприятия. Безусловно, нельзя перепутать два измерения с тремя, находясь в здравом уме. По крайней мере, так кажется. Путь, который привел Малдасену к его открытию, был запутанной и извилистой тропинкой, которая проходила через экстремальные черные дыры, D-браны и нечто, называемое матричной теорией[150], и в конце приводила к голографическому принципу.
Отправной точкой были D-браны Полчински. Напомню, что D-брана — это материальный объект, который в зависимости от размерности может быть точкой, линией, поверхностью или объемом, заполняющим пространство. Главное свойство, отличающее D-браны от всего остального, состоит в том, что на них могут заканчиваться фундаментальные струны. Для определенности давайте сосредоточимся на D2-бpaнax[151]. Представьте себе плоскую двумерную поверхность, плавающую в трехмерном пространстве, подобно магическому паркету. Открытые струны могут присоединяться к этой D-бране обоими своими концами. Они способны скользить вдоль D-браны, но не могут свободно перепрыгивать в третье измерение. Кусочки струн, словно на коньках без трения, катятся по метафорическому льду, будучи неспособным оторвать от него ноги. Издали каждый кусочек струны выглядит как частица, движущаяся в двумерном мире. Если струн больше одной, они могут сталкиваться, рассеиваться друг на друге и даже сливаться в более сложные объекты.

D-браны могут существовать по отдельности, но они липкие. Если аккуратно их сблизить, они сцепятся и образуют составную брану из нескольких слоев, как на следующем рисунке.

Я нарисовал D-браны на некотором расстоянии друг от друга. Но когда они сливаются, промежуток исчезает. Группу слипшихся вместе D-бран называют D-бранной стопкой.
Свойства открытых струн, движущихся по D-бранной стопке, богаче и разнообразнее, чем у струн, движущихся по одиночной D-бране. Два конца струны могут присоединиться к разным элементам стопки, как если бы два конька двигались по двум немного разным уровням. Чтобы различать браны, им можно дать имена. Например, в нарисованной выше стопке можно назвать браны красной, зеленой и синей.
Концы струн, которые катятся по D-бранной стопке, должны быть всегда присоединены к D-бране. Например, струна может быть обоими концами присоединена к красной бране. Тогда это будет красно-красная струна. Аналогично могут быть сине-синие и зелено-зеленые струны. Но возможно также, что два конца струны присоединены к разным бранам. Так получаются красно-зеленые струны, красно-синие и т. д. Всего имеется девять разных возможностей для движения струн по этой D-бранной стопке.
Интересные вещи начинаются, когда к бранам присоединено несколько струн.

Струны на Б2-бранной стопке очень похожи на обычные частицы, но только в мире, имеющем два пространственных измерения. Они взаимодействуют друг с другом, рассеиваются при столкновениях и оказывают силовое воздействие на находящиеся поблизости струны. Одна струна может распасться на две. На следующей серии рисунков показано, как струна на одиночной бране разделяется и превращается в две струны.

Точка на исходной струне соприкасается с браной, что позволяет струне разделиться, но непременно так, чтобы все концы были присоединены к бранам. Предыдущий рисунок можно также просматривать снизу вверх, и тогда получится, что пара струн сливается и образует одну.
А вот последовательность кадров со струнами на стопке из трех D-бран. Здесь показано, как красно-зеленая струна сталкивается с зелено-синей. Две струны сливаются и образуют одну красносинюю струну.
Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.
- 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
- 2. Просьба отказаться от оскорблений, угроз и запугиваний.
- 3. Просьба отказаться от нецензурной лексики.
- 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.
Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.
Оставить комментарий
-
Kelly11 июль 05:50 Хорошо написанная книга, каждая глава читалась взахлёб. Всё описано так ярко: образы, чувства, страх, неизбежность, словно я сама... Не говори никому. Реальная история сестер, выросших с матерью-убийцей - Грегг Олсен
-
Аноним09 июль 05:35 Главная героиня- Странная баба, со всеми переспала. Сосед. Татьяна Шумакова.... Сосед - Татьяна Александровна Шумкова
-
ANDREY07 июль 21:04 Прекрасное произведение с первой книги!... Роботам вход воспрещен. Том 7 - Дмитрий Дорничев