KnigkinDom.org» » »📕 Космос. Иллюстрированная история астрономии и космологии - Джон Норт

Космос. Иллюстрированная история астрономии и космологии - Джон Норт

Книгу Космос. Иллюстрированная история астрономии и космологии - Джон Норт читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

1 ... 24 25 26 27 28 29 30 31 32 ... 305
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
а другая – для годового движения Солнца в противоположном направлении. Вторая сфера, очевидно, должна вращаться вокруг полюсов эклиптики. Аналогичным образом может быть описана Луна. (И в том и в другом случае предполагается, что объект находится примерно посередине между полюсами сферы, к которой он относится.) На деле, Евдокс вводит дополнительную третью сферу как для Солнца, так и для Луны. В случае Луны, вполне возможно, она предназначалась для учета наклона лунной орбиты к эклиптике под углом примерно пять градусов; она пересекает ее в определенных точках (узлах), медленно движущихся по зодиаку в обратном направлении. (Как показано в предыдущей главе, узлы описывают полный круг по небу примерно за 18,6 года.) Источником этой догадки могли стать рудиментарные представления о затмениях. Если именно это стало причиной введения третьей сферы, то и Аристотель, и Симпликий ошиблись в порядке расположения второй и третьей лунных сфер, но, в принципе, их расчеты не были лишены смысла. Вызывает определенное недоумение введение Евдоксом дополнительной третьей сферы еще и для движения Солнца, судя по всему, основываясь на том, что в дни зимнего и летнего солнцестояний Солнце не всегда восходит в одной и той же точке горизонта. Симпликий утверждает, будто те, кто жил до Евдокса, размышляли об этом. Эта идея повторялась и несколькими более поздними авторами.

41

Серия гиппопед. Для каждой из планетных моделей Евдокса требовалась только одна гиппопеда, но мы можем убедиться в том, как, выбирая из этого ассортимента, он имел возможность дать объяснение широкому спектру движений как по широте, так и по долготе.

Именно его интерпретация прямого и попятного движения планет придала вращающимся сферам Евдокса вид канонической модели. Далее он демонстрирует, каким образом точка может описывать фигуру в виде восьмерки, которая, в свою очередь, переносится по небу более длительным планетным движением, находясь более или менее в пределах зодиака. Чтобы получить эту фигуру (гиппопеду), он просто берет пару сфер, одна из которых вращается в одном направлении, а другая – в противоположном направлении с той же скоростью вокруг оси первой сферы, не совпадающей с осью ее собственной (второй) сферы. Для наглядности на ил. 41 изображены десять обсуждаемых здесь математических кривых, соответствующих различным углам наклона двух упомянутых осей. Теперь нужно рассмотреть движение планеты вдоль этой ∞-образной траектории, развернув его во времени. Нетрудно представить, каким образом перенос ее вдоль зодиака (или в близкой от него области) будет время от времени давать попятное движение при обращении вокруг оси, расположенной под прямым углом к длине гиппопеды. К этому третьему движению необходимо добавить суточное вращение неба, так называемое «вращение неподвижных звезд».

42

Общий характер планетной траектории по Евдоксу; качественно допустимый, но неосуществимый в реальности

Если не принимать во внимание это третье вращение, то общий вид траектории движения будет таким, как показано на ил. 42; рисунок точно воспроизводит форму кривой, но параметры скорости и наклона осей выбраны на нем произвольно. Мы отложим на время вопрос о точном воспроизведении планетных движений, как они наблюдаются на самом деле.

Применяя такую аппроксимацию к движению планет, по крайней мере качественно, можно свести кажущееся хаотичное перемещение к закономерному. Это открытие, без сомнения, вызвало восторг у Платона. Однако какую цель ставил перед собой сам Евдокс? Есть все основания полагать, что восхищение, которое вызвало у греков предложенное им объяснение, относилось не столько к предсказательной силе теории, сколько к ее геометрическим достоинствам. Для оценки реального характера достижений Евдокса необходимо хотя бы в общих чертах воспроизвести ее геометрическую реконструкцию, предложенную в 1870‐х гг. талантливым итальянским астрономом Джованни Вирджинио Скиапарелли. Используя известные теоремы греческой геометрии, уже употреблявшиеся во времена Евдокса, он показал, что гиппопеда является линией пересечения цилиндра со сферой, на которой лежит эта кривая. Цилиндр при этом, как предполагается, изнутри касается сферы (см. ил. 43).

43

Гиппопеда как кривая, получающаяся при пересечении сферы и цилиндра, касающегося ее изнутри. Буквенные обозначения соответствуют приведенным на ил. 44.

Этот красивый геометрический вывод, лишь отдаленно напоминающий описания, составленные Аристотелем и Симпликием, был не так уж и чужд рассматриваемой эпохе. Учитель Евдокса Архит, решая проблему удвоения куба, рассматривал пересечение трех поверхностей вращения – тора (якорного кольца), конуса и цилиндра. Те, кто считает, будто Евдокс не мог оказаться вне этого тренда, но не выражает желания рассуждать об этом в категориях трансцендентных кривых четвертого порядка, могли бы дополнить сферу и цилиндр еще одной простой поверхностью, где можно расположить гиппопеду. Это некая поверхность, постоянным сечением которой является парабола. (Представьте лист бумаги, согнутый таким образом, чтобы два его противоположных края образовывали две одинаковые параболы, тогда линия гиппопеды будет полностью лежать на этом листе.) У нас нет убедительных доказательств того, знал ли Евдокс об этом свойстве изобретенной им гиппопеды, однако то же самое может быть со всей строгостью применено и к сечению цилиндра. Исходно сам Евдокс, скорее всего, рассуждал именно в этих категориях, хотя, когда средневековые и ренессансные астрономы узнали о подобных моделях, они выказали их непонимание, во всяком случае в некоторых аспектах.

44

Вспомогательная схема, позволяющая понять геометрию гиппопеды. Диаграмма вписана в центральную плоскость ил. 43.

Модель Евдокса оказалась столь значима в истории геометрической астрономии, что нам просто необходимо доказать ее хотя бы схематично для демонстрации элегантности астрономической доктрины, разработанной более двадцати трех столетий назад. Будем различать несущую и несомую сферы. На ил. 44 направление взгляда (сверху) совпадает с осью первой сферы и параллельно оси цилиндра, на поверхности которого находятся точки F, E и A. (Поучительно будет спросить, почему этот цилиндр не параллелен другой оси; или, например, не расположен симметрично между ними.) A – исходная точка планеты, а дуга AB – ее движение вдоль экватора несомой сферы за какое-то время. Если смотреть сверху, то он (экватор) будет казаться эллипсом, а угол AOB, как он виден на рисунке, – будет меньше реального трехмерного угла. На самом деле он равен изображенному на рисунке углу AOC, где C – это точка, отделившаяся от A в тот же момент времени, что и точка В, но движущаяся по другому кругу. Точки B и C, очевидно, будут располагаться на одном и том же уровне (CB образует перпендикуляр с OA). Рассмотрим теперь, как это составное движение планеты будет осуществляться во времени, если наблюдать за ним в плоскости диаграммы (то есть ортогональной проекции на эту плоскость). Планета движется вверх до точки B несомым движением и дополнительно поворачивается движением несущей сферы, осуществляющей перенос отрезка OB в OE; причем угол BOE равен углу AOC. Необходимо доказать, что точка E лежит на линии сечения цилиндра. Если угол CBD прямой, а точка D лежит на отрезке OC, то достаточно показать неизменность длины отрезка CD; поскольку в этом случае вся совокупность точек типа D (включая F) будет лежать на окружности с центром в O. Угол FEA также будет прямым, поэтому точка E будет лежать на окружности с диаметром FA, то есть на сечении цилиндра.

1 ... 24 25 26 27 28 29 30 31 32 ... 305
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.


Партнер

Новые отзывы

  1. Гость Светлана Гость Светлана26 июль 20:11 Очень понравилась история)) Необычная, интересная, с красивым описанием природы, замков и башен, Очень переживала за счастье... Ледяной венец. Брак по принуждению - Ульяна Туманова
  2. Гость Диана Гость Диана26 июль 16:40 Автор большое спасибо за Ваше творчество, желаю дальнейших успехов. Книга затягивает, читаешь с удовольствием и легко. Мне очень... Королевство серебряного пламени - Сара Маас
  3. Римма Римма26 июль 06:40 Почему героиня такая тупая... Попаданка в невесту, или Как выжить в браке - Дина Динкевич
Все комметарии
Новое в блоге