KnigkinDom.org» » »📕 Космос. Иллюстрированная история астрономии и космологии - Джон Норт

Космос. Иллюстрированная история астрономии и космологии - Джон Норт

Книгу Космос. Иллюстрированная история астрономии и космологии - Джон Норт читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

1 ... 34 35 36 37 38 39 40 41 42 ... 305
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
что максимальная широта Луны, при отсчете от эклиптики, составляет 5°. У него было ясное понимание трехмерности относительных положений Солнца, Луны и Земли во время затмений, и он разработал геометрические процедуры для расчета действительных расстояний Солнца и Луны от Земли, которые могли быть успешно высчитаны из доступных ему наблюдений. Полученные им результаты содержали серьезные ошибки, но главным образом из‐за некритичного отношения к полученным им верхним и нижним границам их значений. Так, среднее расстояние до Луны было установлено им в интервале между 59 и 67⅓ земного радиуса. Ни один из предыдущих астрономов не подошел столь близко к правильному решению – чуть более 60 земных радиусов. Для расстояния до Солнца он привел величину, оказавшуюся меньше пятидесятой доли истинного значения, но он, по крайней мере, понял свою беспомощность в решении этого вопроса: он не смог измерить параллакс Солнца, но выдвинул оценочное численное предположение. Он исходил из семи минут дуги, хотя, на деле, это значение близко к девяти секундам. (На ил. 56 приведена геометрическая модель, на которой он основывал свои вычисления.)

В общем случае «параллаксом» называют угол изменения видимого положения объекта при рассматривании его из двух различных пунктов (см. ил. 57). Забегая вперед, отметим, что, поскольку Земля движется по своей орбите вокруг Солнца, угол отклонения какой-либо близко расположенной звезды будет меняться и она будет постепенно описывать на небе крошечный эллипс на фоне удаленных звезд (см. левую часть рисунка). За один год она опишет один полный эллипс. Астрономы не имели возможности зарегистрировать его до XIX в. Этот звездный параллакс (или «годичный параллакс») необходимо отличать от суточного параллакса, столь важного для внесения поправок в предвычисленные солнечные и лунные положения. Они, будучи рассчитанными на основе планетных моделей, соотносятся с центром Земли. Однако наши наблюдения Солнца и Луны осуществляются из точки, отстоящей от центра Земли более чем на 6350 километров. Если мы наблюдаем какой-либо объект, когда он находится точно над нашей головой, то параллакс, очевидно, должен равняться нулю, поскольку мы сами (в точке D на правой части рисунка), центр Земли и наблюдаемый объект – все это располагается на одной линии. Очевидно, что угол параллакса возрастает до максимума, когда объект находится вблизи горизонта, а мы – в точке B на упомянутом рисунке. Когда мы говорим о солнечном или лунном параллаксе в широком смысле, мы имеем в виду эти максимальные значения. Они, очевидно, напрямую связаны с расстояниями до рассматриваемых тел и с радиусом Земли, и начиная с XVIII в. их точные значения было принято приводить в расчете относительно экваториального радиуса. Именно это легло в основу устойчиво сложившегося терминологического оборота «средний экваториальный горизонтальный параллакс» – сложное выражение, характеризующее простую величину.

56

Пытаясь определить расстояния до Солнца (a) и Луны (b) в радиусах Земли (t), Гиппарх следовал примеру Аристарха (ил. 50). Он достаточно точно определил значения их видимых угловых размеров (полагая их равенство друг другу). Он считал, что угловые размеры земной тени на лунном расстоянии в 2½ раза превосходят размеры Луны. Однако этого было недостаточно: по его оценкам, солнечный параллакс должен быть равен 7 минутам дуги, что эквивалентно расстоянию в 490 земных радиусов. (О понятии параллакса см. с. 157.) Версия его собственного доказательства утрачена, однако ее можно восстановить по описаниям, оставленным Птолемеем. Как и у Аристарха, она, по-видимому, была избыточно геометричной и рассудочной, но Гиппарх, очевидно, обладал бо́льшим опытом в использовании приближений, точнее согласующихся с малыми углами в численном отношении. Они приведены здесь без дополнительных пояснений. Расстояние, обозначенное на рисунке буквой n, не играет большой роли и будет впоследствии исключено. Поскольку Земля находится между Луной и собственной тенью, ее радиус t определится как среднее арифметическое значений u и (n + m). Отрезки, обозначенные как n и t, являются основаниями подобных треугольников, а значение (n ÷ t) равно отношению (SM/ST). Последнее отношение, в свою очередь, равно (a – b) ÷ a, поскольку отрезки, обозначенные этими буквами, также являются соответствующими сторонами подобных треугольников. (Для большей очевидности и во избежание путаницы эти треугольники изображены в нижней части рисунка.) Теперь в нашем распоряжении есть все необходимое – два уравнения, из которых можно исключить n:

2t = m + n+ u и n ÷ t = (a – b) ÷ a.

Гиппарх полагал, что на среднем расстоянии от Земли угол, противолежащий радиусу Луны (то есть отрезку длиной m), составляет 1/1300 часть ее орбиты (которая равна 2pb). Из всего этого, а также из оценочных значений, полученных им для u и a (они приведены выше), можно найти, что расстояние до Луны равно примерно 67,2 радиуса Земли (Гиппарх получил значение 67⅓). Гораздо большего внимания заслуживает проведенная в работе оценка погрешностей. Что бы произошло, если бы Солнце находилось на еще большем расстоянии от Земли? Если бы оно было удалено на бесконечное расстояние, то величина, обратная 490 в последнем вычислении, обратилась бы в ноль, что определило бы минимальное расстояние до Луны как величину, чуть бо́льшую 59 земных радиусов. По современным данным, среднее значение этой величины – 60,27 радиуса Земли. Этот результат можно считать одним из замечательнейших достижений античной астрономии, несмотря на скудость наблюдательных данных, из которых его получили.

57

В общем случае «параллаксом» называют угол изменения видимого положения объекта при рассматривании его из двух различных пунктов. Забегая вперед, отметим, что, поскольку Земля движется по своей орбите вокруг Солнца, угол отклонения какой-либо близко расположенной звезды будет меняться таким образом, что она постепенно опишет на небе крошечный эллипс на фоне удаленных звезд (см. левую часть рисунка). Полный эллипс будет описан за год. Этот звездный параллакс (или «годичный параллакс») необходимо отличать от суточного параллакса, столь важного для внесения поправок в предвычисленные солнечные и лунные положения. Будучи рассчитанными на основе планетных моделей, они часто соотносятся с центром Земли. Однако наши наблюдения за Солнцем и Луной осуществляются из точки, отстоящей от центра Земли более чем на 6350 километров. Если мы наблюдаем какой-либо объект, когда он находится точно над нашей головой, то параллакс равен нулю, поскольку мы сами (в точке D на правой части рисунка), центр Земли и наблюдаемый объект располагаются на одной линии. Очевидно, что параллакс возрастает до максимума, когда объект находится вблизи горизонта, а мы – в точке B, как это показано на рисунке. Когда мы говорим о солнечном или лунном параллаксе в широком смысле, мы имеем в виду эти максимальные значения. Они, очевидно, напрямую связаны с расстояниями до рассматриваемых тел и с радиусом Земли, и начиная с XVIII в. было принято приводить их точные значения в расчете относительно экваториального радиуса. Так это слово вошло в устойчивый терминологический оборот: «средний экваториальный горизонтальный параллакс».

58

Согласно общему мнению, Эратосфен руководствовался сведениями о расположении полуденного Солнце в Сиене в день летнего солнцестояния прямо над головой, так что гномон не отбрасывает тени, а отблески солнечных лучей можно увидеть со дна самого глубокого колодца. Он измерил угловое зенитное расстояние Солнца (α) в Александрии, находящейся от Сиены на расстоянии (d), которое считалось равным 5000 стадий. Определив, что α составляет

1 ... 34 35 36 37 38 39 40 41 42 ... 305
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.


Партнер

Новые отзывы

  1. Гость Светлана Гость Светлана26 июль 20:11 Очень понравилась история)) Необычная, интересная, с красивым описанием природы, замков и башен, Очень переживала за счастье... Ледяной венец. Брак по принуждению - Ульяна Туманова
  2. Гость Диана Гость Диана26 июль 16:40 Автор большое спасибо за Ваше творчество, желаю дальнейших успехов. Книга затягивает, читаешь с удовольствием и легко. Мне очень... Королевство серебряного пламени - Сара Маас
  3. Римма Римма26 июль 06:40 Почему героиня такая тупая... Попаданка в невесту, или Как выжить в браке - Дина Динкевич
Все комметарии
Новое в блоге