Муза и алгоритм. Создают ли нейросети настоящее искусство? - Лев Александрович Наумов
Книгу Муза и алгоритм. Создают ли нейросети настоящее искусство? - Лев Александрович Наумов читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!
Шрифт:
Интервал:
Закладка:
Сумма технологии: нейронные сети, ложь и живопись
Честно говоря, от детального обсуждения того, что такое нейронные сети и как они устроены, хотелось бы уклониться. Во-первых, принимая во внимание магистральную тему нашего разговора, это существенно размыло бы целевую аудиторию – не всякий читатель прорвётся через текст, посвящённый одновременно программированию, биологии и культуре. Во-вторых, теоретическая и техническая стороны их устройства обсуждаются в великом множестве источников, а потому не хочется повторяться.
Для дальнейшего понимания настоящей книги достаточно отдавать себе отчёт в том, что нейронная сеть – это термин, пришедший в компьютерные технологии из биологии. Так называется система нейронов, соединённых между собой с помощью синапсов. В свою очередь, нейроны – специализированные, электрически возбудимые клетки нервной системы, предназначенные для приёма, элементарной обработки, хранения и передачи информации далее посредством электрических и химических сигналов. По сути, именно они являются структурно-функциональными единицами нервной системы. Каждый отдельный нейрон работает поразительно просто, и это не вяжется с тем, что мы называем высшей нервной деятельностью. Однако тривиальные операции превращаются в сложные решения за счёт невероятного количества участвующих элементов. Скажем, такое творческое занятие, как чтение, становится возможным в том числе и благодаря нейронной сети, связывающей зону угловой извилины со зрительными областями, а также с несколькими теменными (ответственными за количественное мышление) и затылочно-височными зонами (где происходит распознавание образов)[6].
В центре нашего разговора будут искусственные нейронные сети – математические модели, созданные для имитации определённых аспектов работы человеческого мозга при решении определённого вида задач. Они состоят из большого количества искусственных нейронов, связанных между собой искусственными синапсами. В остальном же всё происходит, как в биологическом прототипе: нейроны обрабатывают поступившую к ним через входные синапсы информацию, выполняют над ней различные функции, такие как распознавание образов, классификация или прогнозирование, а потом через выходные синапсы направляют результат далее. Нейросеть можно представить себе как систему взаимосвязанных ячеек, на каждую из которых возложены определённые вычисления.
Как правило, нейрон имеет множество неравноправных синапсов – среди них есть более и менее предпочтительные[7]. Каждой связи сопоставлен “вес”. Таким образом, “траектория” данных по сети становится вероятностным процессом, словно судьба игрока в казино. Для того чтобы определить, каким из синапсов следует воспользоваться при передаче, генерируется случайное число, и путь выбирается с учётом “желательности” каждой конкретной связи. Пройдя свой неожиданный маршрут от входа до выхода из сети, начальные данные превращаются в конечный результат. Получается, что одну из важнейших ролей в работе модели играют упомянутые веса, сопоставляемые всем синапсам и определяющие важность, а также вклад каждого отдельного нейрона. Но откуда они берутся и от чего зависят? Это самое интересное.
Прежде чем войти во “взрослую жизнь”, новорождённые нейронные сети получают “образование”, и этим они тоже похожи на людей. Ab ovo все связи каждого нейрона равноправны. “Сознание” “цифрового младенца” – чистый лист, у него отсутствуют основания для принятия решений, а потому данные проходят сквозь череду нейронов по воле беспримесного случая… И тут появляется человек новой профессии – тренер нейронных сетей.
На первых порах он оценивает каждый прецедент функционирования “своих подопечных”, и если результат соответствует входным данным и поставленной задаче, то веса всех задействованных для его получения синапсов увеличиваются, а если нет – уменьшаются. Таким образом, модель “изучает” ту предметную область, в которой ей предстоит работать, – получает “профессиональное образование”. В результате она обобщает поступающие данные, находит закономерности, что впоследствии позволит ей делать прогнозы и принимать решения. Аналогичным образом закономерности запечатлеваются и в нашем мышлении, хоть порой мы и не отдаём себе отчёта, когда руководствуемся ими.
Такова отличительная черта систем так называемого “глубокого обучения”: подобные нейронные сети можно именно “натренировать”, “привить” им определённые представления о мире, которые лягут в основу их последующей работы. При этом в них нет фиксированного алгоритма решения задач конкретного типа – они тренируются под задачи.
Если описанный принцип остался не вполне понятным, то имеет смысл обратиться к хрестоматийному примеру – “самообучающейся машине из спичечных коробков”, предложенной популяризатором науки Мартином Гарднером в культовой некогда книге “Математические досуги”[8]. Пример искусственного интеллекта, собранного без кремниевых процессоров – из картонных коробочек и бисера, – может послужить занятной иллюстрацией и сделать принцип работы довольно прозрачным, но скорее всего, именно тут зазвучат голоса скептиков: “Вы серьёзно? Так просто? Хотите сказать, что эта модель может хоть как-то воспроизводить работу мозга?” Безусловно, совершенно серьёзно. Всё дело в масштабе, в количестве нейронов, синапсов, параметров и объёме обучения. Чтобы играть в крестики-нолики, достаточно трёхсот спичечных коробков, выполняющих функции нервных клеток, и двадцати тренировочных партий в качестве базового образования. Гарднер, впрочем, предлагает оптимизированную модель для упрощённой игры, позволяющую сократить количество коробков до двадцати четырёх. Разумеется, чтобы создавать тексты, картины, музыку или видео, нужно что-то посложнее, но принцип не меняется.
Скажем, в среднестатистическом человеческом мозге восемьдесят шесть миллиардов нейронов. В остальном всё то же самое: по ходу взросления и обучения (в том числе даже не умышленного и организованного, а совершенно спонтанного, связанного с восприятием всего вокруг) в теменной коре формируется информационно-речевая модель реальности. Слово “модель” в данном случае использовано не менее правомерно, чем при обсуждении нейросетей, поскольку наши представления о мире не тождественны миру, они – лишь его отпечаток.
Не стоит поддаваться заблуждению, будто у нас в голове – реальность. Каждый человек несёт в себе лишь модель действительности. Для описания такого положения дел Стивен Хокинг предложил идею “моделезависимого реализма”[9]. Это словосочетание звучит будто название художественного направления, но обозначает куда более универсальный принцип, поскольку включает искусство (как реалистическое, так и нет) в виде частного случая. Именно наша нейронная сеть – отпечатавшаяся в теменной коре модель действительности – используется нами как в творчестве, так и при принятии любых решений. Если ответ на какой-то вопрос удаётся найти едва ли не мгновенно, даже не задумываясь, это значит, что траектория от входа к выходу оказалась чрезвычайно удачной, чуть ли не идеальной. Заметим, что такую ситуацию почти никогда не описывают приведёнными словами – чаще её связывают с интуицией.
Когда мы сталкиваемся со сложным вопросом, требующим долгих раздумий, одни и те же данные приходится гонять от входа к выходу многократно, корректируя после каждой итерации. Иногда лучше даже отложить решение, поскольку постоянный рост синапсов[10] и непрекращающееся обучение могут со временем привести к качественно новому результату. Именно потому, когда вы оказываетесь в затруднительном положении, имеет смысл пойти погулять: свежий воздух и умеренная физическая активность способствуют росту новых
Прочитали книгу? Предлагаем вам поделится своим отзывом от прочитанного(прослушанного)! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Уважаемые читатели, слушатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.
- 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
- 2. Просьба отказаться от оскорблений, угроз и запугиваний.
- 3. Просьба отказаться от нецензурной лексики.
- 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.
Надеемся на Ваше понимание и благоразумие. С уважением, администратор knigkindom.ru.
Оставить комментарий
-
Гость Светлана14 февраль 10:49
[hide][/hide]. Чирикали птицы. Благовония курились на полке, угли рдели... Уже на этапе пролога читать расхотелось. ...
Госпожа принцесса - Кира Стрельникова
-
Гость Татьяна14 февраль 08:30
Интересно. Немного похоже на чёрную сказку с счастливым концом...
Игрушка для олигарха - Елена Попова
-
Гость Даша11 февраль 11:56
Для детей подросткового возраста.Героиня просто дура,а герой туповатый и скучный...
Лесная ведунья 3 - Елена Звездная
